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ABSTRACT
Text editing on smartphones presents substantial difficulties for
blind users, particularly in mobile situations where using the smart-
phone touch screen is challenging. While voice input allows for
hands-free text creation, editing the text typically requires physi-
cal interaction with the touchscreen, negating the benefits of the
hands-free input mechanism. This paper introduces GestureVoice,
a novel multimodal approach that enables screen-free text editing
for blind users. By leveraging smartwatch-based hand gestures
for navigation and voice commands for correction, GestureVoice
allows users to edit text without any contact with their smart-
phones.GestureVoice replaces cumbersome screen-based interaction
for choosing the navigation granularity with an intuitive mid-air
hand gesture. It also introduces an adaptive crown cursor (rotating
the physical dial of the watch) to smoothly navigate to the edit
location. A preliminary study highlighted the significant time spent
by blind users correcting text errors using traditional methods. In
contrast, our evaluation with 8 blind users demonstrates that Ges-
tureVoice achieves a 53.80% reduction in text editing time, offering
a more efficient, intuitive, and screen-free solution for blind users.
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• Human-centered computing → Accessibility design and
evaluation methods; Accessibility systems and tools; User
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1 INTRODUCTION
Text editing on smartphones is extremely challenging for blind
users, often accounting for more than 50% of the difficulties they
encounter while using mobile devices [26, 43]. Although screen
readers (e.g., TalkBack for Android and VoiceOver for iOS ) are
valuable accessibility tools that are often used for smartphone inter-
actions, they are limited to reading text aloud. Editing text, which
involves navigating to and modifying the text, is laborious and slow,
especially because of the lack of visual cues [5, 9].

The difficulties in text editing are further exacerbated in the mo-
bile context. A blind person often needs to use both hands to edit
text since it requires touchscreen interactions. This is extremely
challenging to perform when walking, when traveling in public
transport, or while holding a dog or a cane with one hand. Of
course, many blind people use voice for text input—voice input is
hands-free and does not need any contact with the phone. How-
ever, voice input introduces numerous errors, and correcting these
errors still requires touchscreen interactions. While voice-only text
correction is possible, it presents significant challenges on mobile
devices, particularly for precise cursor positioning and efficient
error correction [19, 24, 38]. Simply re-dictating sections is also
inefficient and can introduce new mistakes.

Instead, we introduce GestureVoice, a multimodal assistive tech-
nology that enables a smartphone screen-free text editing experience
by combining hand gestures with voice commands (see Figure 1). A
blind person using GestureVoice can edit a text message on-the-go
even without removing their phones from their pockets and with-
out any contact with their smartphone (hence the term screen-free).
The enabling technology is a smartwatch-based gesture recognition
algorithm that can accurately detect hand gestures using sensors
captured from a smartwatch. Smartwatches are becoming increas-
ingly popular [14, 28, 29] and many blind people own smartwatches,
which means the user does not have to carry any additional custom
device for gesture recognition. Khanna et al. [28] found that over
70% of their user study participants owned a wearable device. Other
studies [1, 25, 54] have corroborated this trend, reporting that blind
users favor wearable devices for everyday interactions. In our own
user study with 8 blind participants (§3) we found that 6/8 users
own a smartwatch and regularly use it for quick interactions.

As a first step, we conducted a preliminary user study with eight
blind people to understand how participants input and edit text.
Seven out of the eight participants primarily used voice for text
input, with 6 participants also supplementing voice with keyboard-
based text entry. However, all participants used touchscreen-based
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Figure 1: GestureVoice enables screen-free text editing for blind users.

text editing and found text editing and correction to be extremely
challenging. Participants required an average of 4.5 minutes to
correct textual errors in a single sentence.

The key challenge in text editing for blind users is in navigat-
ing the cursor to the error location, especially in the absence of
visual cues. These steps involved (i) choosing the right navigation
granularity and (ii) positioning the cursor at the error location,
which were both challenging. Many blind participants, particularly
those using Apple devices, rely on the rotor [3] to choose the gran-
ularity. The rotor is a context-dependent wheel of commands that
helps choose the navigation granularity— sentence-by-sentence,
word-by-word, or character-by-character. While the rotor function-
ality is useful for text editing, interacting with the rotor requires a
non-standard two-finger twisting gesture on the screen (Figure 2),
which is cumbersome. Participants found rotor interaction to be an
average of 3.38 difficulty on the Single Ease Question (SEQ) rating
scale of 1 to 7, where 1 is difficult and 7 is easy (see § 3.2). Our study
shows that navigation alone accounts for 3.28 minutes of the total
4.5 minutes editing time for a single sentence, making rotor a major
bottleneck in the text correction process for blind users.

GestureVoice introduces two gesture-based techniques to effi-
ciently navigate the cursor at the error location. First, GestureVoice
decouples the rotor functionality from its interaction modality. Ges-
tureVoice uses a simple, intuitive mid-air hand gestures (e.g., circle
gesture) performed with the watch-wearing hand to allow the user
to easily switch navigation granularity (character, word, sentence),
replacing the awkward two-finger twist gesture used by rotors. Our
evaluation shows we can detect this mid-air circular gesture with a
high accuracy of 97.5%, enabling robust contactless interaction.

Second, GestureVoice introduces an adaptive cursor navigation
so that the user can modulate the movement towards the error
location, instead of moving to the error location step-by-step. Users
rotate the crown of the watch (physical dial on the side of a watch)
with desired speed that determines how quickly they move through
the content. A fast spin jumps quickly across multiple steps, while
a slow turn allows for precise, fine-grained control—ideal when the
error is nearby. This dynamic interaction makes navigating to the
error location faster and smoother.

GestureVoice combines the gesture-based navigation with voice
commands for text editing. The user can use simple voice com-
mands issued via the watch microphone (e.g., "delete," "insert [text],"

"replace [text]," "spell," "bold") to execute the desired edit, leverag-
ing the speed of voice for the action itself. Figure 1 illustrates the
approach of screen-free text editing for blind users.

We present the design, implementation, and rigorous evaluation
of the GestureVoice system. Our evaluation shows that GestureVoice
screen-free text editing approach reduced the task completion time
for blind users by 53.80% when compared to the screen reader-
based editing. For context, editing a document with 10 errors would
require approximately 17 minutes with traditional screen readers
but only about 6.5 minutes when edited with GestureVoice. Sub-
jective evaluation shows that GestureVoice significantly enhanced
editing efficiency while reducing cognitive load and improving
intuitiveness among the users.

2 RELATEDWORK
In this section, we review current methods designed for text editing
for blind users.

2.1 Text editing for blind users
Blind users rely on screen readers such as VoiceOver [2] on iOS and
TalkBack [21] on Android to interact with their smartphones [8].
Blind people use these screen readers not only to ingest informa-
tion, but also for text editing. Both iOS and Android integrate an
additional rotor feature in the screen readers for text editing that
allows the user to choose their navigation granularity. For example,
on iOS, the “two-finger rotational gesture” activates the rotor which
is a context-dependent command wheel [3]. As the wheel rotates,
the user can choose the navigation granularity as the character,
word, or sentence level. Once the granularity is chosen, the user can
navigate to the chosen word for editing. However, prior research
shows that blind users often struggle with the two-finger rotor
gesture on VoiceOver, with some opting to rewrite text entirely
instead of using the rotor for text editing [5, 9]. Our own study (§3)
confirms this finding.

As an alternate to screen readers, BrailleSketch [33] enables blind
users to input text by sketching gestures that trace the dots cor-
responding to each Braille letter from any screen position, with
word-level feedback and auto-correction. Hybrid-Brailler [48] com-
bines physical chorded input for Braille entry on the back of the
device with distinct touchscreen gestures dedicated to text edit-
ing tasks. Other Braille-based touchscreen input methods for blind
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S.No. Gender Age Text composi-
tion

Text correction Frequency of
texting on-the-
go

Does voice recog-
nition work for
you?

Challenges in text correction

1 F 51 voice, keyboard backspace and re-
dictate/ re-type

not a lot sometimes backspace a lot, difficult to know the cur-
sor location, voice doesn’t work well in
public

2 F 50 voice, keyboard backspace and re-
dictate

all the time sometimes backspace a lot, voice doesn’t work well
sometimes

3 M 58 voice backspace and re-
dictate

all the time most of the time backspace a lot, voice doesn’t work well
if background noise is present

4 F 37 voice, keyboard rotor and re-type all the time sometimes rotor action is very hard, unable to rotate
the rotor sometimes, difficult to know the
cursor location

5 M 44 voice, keyboard rotor and re-type all the time all the time difficult to know the cursor location
6 M 59 keyboard backspace and

re-dictate, some-
times rotor

sometimes all the time backspace a lot, voice is not consistent,
rotor action is very hard, difficult to know
the cursor location

7 F 40 voice, keyboard rotor and re-type sometimes sometimes -
8 M 60 voice, keyboard rotor and re-type all the time sometimes voice doesn’t work well if background

noise is present, backspacing a lot
Table 1: Summary of participants’ text composition and correction strategies, including frequency of mobile text usage, how
well voice recognition worked in practice, and the challenges encountered during text correction.

users include BrailleTouch [47], which uses a 3x2 key layout with
flick gestures, and Perkinput [6], which leverages input finger de-
tection to map touch patterns to 6-bit Braille with audio feedback.
However, fewer than 40% of blind users use Braille, and even fewer
do so on smartphones. Most prefer integrated mobile screen readers
for their ease of use and real-time auditory feedback [37].

2.2 Voice-based interaction
Voice input is an efficient and accessible method for text entry
particularly for blind users [5, 17, 45, 52]. However, text editing
using voice remains challenging.

In the case of sighted users, voice-based text correction has
been explored across a range of contexts, including document edit-
ing [19, 30, 40, 46]. More recently, it has expanded into mobile sce-
narios such as smartphone-based correction [13, 17] and hands-free
composition using smart glasses [18], with the aim of supporting
eyes-free interaction and reliance on touch-based input. Beyond
direct editing commands, significant work has also focused on im-
proving the underlying speech recognition for more natural and
robust voice-only interactions. This includes addressing recognizer
acceptance through robust speech repair mechanisms [36] and en-
abling automatic selection and correction of recognition errors by
re-speaking the intended text [49, 50]. However, these systems of-
ten impose high cognitive demands, require precise and inflexible
voice commands, and frequently have errors when interpreting
ambiguous input [19, 24, 38]. These factors hinder their practicality
in real-world use.

Khan et al. [27] developed a speech-based text editing system
especially for blind users, using Google Speech API for voice-
command-driven text entry and editing, with key phrases (e.g. acti-
vate word replace) enabling editing modes and providing real-time
auditory feedback. However, editing remains challenging due to
the linear and temporal nature of audio, which makes it hard to
navigate and correct errors [5, 22].

2.3 Gesture-based interaction
Blind users find touchscreen interactions challenging due to is-
sues such as the difficulty of one-handed interactions, the overload
of gesture functions, and the susceptibility to shoulder-surfing at-
tacks [5, 32, 53]. Recent studies have investigated alternative interac-
tion modalities to replace traditional touchscreen gestures for blind
users [11, 12, 14, 34, 35, 41]. Hand gesture interactions via smart-
watches present a promising alternative by eliminating the need for
specialized sensors. AccessWear [28] shows that blind users prefer
smartwatch gestures as an alternative interaction method. For blind
users, hand gestures offer a secure and convenient way to inter-
act with their phones without needing to take them out. This not
only allows for one-handed use but also significantly reduces the
risk of shoulder surfing attacks. However, current gesture-based
interactions do not extend to text editing.

2.4 Multi-modal text correction on mobile
devices for sighted users

Finally, there has been considerable studies on text correction for
sighted users on mobile devices. Modern smartphones employ auto-
correction to automatically fix the word currently being typed but
this feature is often limited in its ability to modify text that has
already been entered [7, 20, 51].

Several works, designed for sighted users, edit previously entered
text using prediction mechanisms [4, 10, 56]. In parallel, gesture-
based systems have focused on improving text editing using differ-
ent gestures [15, 16, 31, 42, 55]. Multimodal systems such as VT [58]
and LLM-VT [57] combine touch gestures and voice commands
for error-tolerant text editing and correction, leveraging language
models to improve performance by handling complete phrases and
tolerating imprecise inputs. Similarly, EyeSayCorrect [59] integrates
eye gaze for word selection with voice input for corrections, in-
ferring the user’s correction intent through voice commands and
contextual text analysis. However, these methods are designed and
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tested only for sighted users; blind users face additional challenges
in text editing because of the lack of visual cues.

3 TEXT EDITING METHODS USED BY BLIND
USERS AND OPPORTUNITIES FOR
SCREEN-FREE TEXT EDITING

We conducted an IRB-approved preliminary study to gather insights
into how blind participants enter and edit text. Our study involved
eight blind participants (4 female, 4 male) aged 37-60 years (see
Table 1). Five of the participants were congenitally blind, meaning
they had never had visual input, while three participants had lost
their sight later in life. All participants were highly experienced
with Apple’s iPhone and proficient in using the built-in VoiceOver
screen reader. For the study, we developed a custom iOS app that
ran on an iPhone 15 Pro, specifically designed to be fully compatible
with VoiceOver. This app served as the primary interface for text
composition and correction tasks. All data was stored for later
offline analysis on the MacBook M1.

3.1 Design
To observe participants’ natural text composition and editing be-
havior, we conduct two tasks as described below.

Task 1: Text Composition and Editing. The first task allowed par-
ticipants to compose and edit text as they would in a real-world
setting. Participants were asked to transcribe five sentences pre-
sented to them via the screen reader. These sentences could be
tapped on, allowing participants to hear the sentence repeatedly,
ensuring that they understood the content. Participants were given
the freedom to use either voice dictation or the on-screen keyboard
for text composition. Additionally, they were instructed to cor-
rect any mistakes using their preferred method, whether that was
backspacing or using the rotor functionality to navigate through
the text.

Task 2: Correcting Induced Errors. In this second task, we in-
troduced five sentences that contained intentional errors, such as
omissions, substitutions, or insertions (see Table 5 for types of
erroneous sentences). Participants were informed of these errors
in advance, and the correct version of each sentence was made
available through the screen reader. By tapping on the reference
sentence, participants could hear the correct sentence spoken aloud.
Participants were asked to correct these errors using any method
they found most comfortable, whether that involved backspacing
through the text and re-typing or re-voicing it, or using the rotor to
navigate to specific parts of the sentence. The errors were strategi-
cally placed to simulate common typing mistakes that might occur
during real-world use.

3.2 Key Findings
The key findings of our study are the following:

1. Voice preferred for composition, manual methods used
for text editing.

We found a strong preference for voice input for initial text
composition task. In general, all participants expressed a general
preference for voice for text input, particularly valuing its hands-
free convenience when outdoors or on the move (see Table 1).

(b)(a)

Figure 2: Interaction of blind users with the screen reader
rotor. (a) shows a user attempting to activate the rotor using
a two-finger rotation gesture with both hands. (b) illustrates
the user rotating both the phone and their hands simulta-
neously to activate the rotor. The mean SEQ score for rotor
gesture difficultywas 3.38 across the users (1-difficult, 7-easy).

When corrections were needed, participants primarily resorted
to manual, touch-based methods: using the screen reader rotor
(4/8 participants) or repeatedly pressing the backspace key (4/8
participants).

When asked about their preference for text editing, half of the
participants (4/8) stated they do not use voice for corrections, while
the other half reported that their primary voice-based "correction"
strategy was to delete the entire message and re-dictate it. This
workaround avoids the difficulty of specifying the error location
but is inefficient and frustrating, often requiring multiple attempts,
especially if dictation accuracy suffers due to background noise (a
problem reported by 5/8 participants in public settings, Table 1).
Table 2 shows some specific user quotes that illustrate the problem
with editing.

2. Screen-based text editing is hard even with rotors.
Even when users resorted to manual correction methods, they

continued to face significant challenges—particularly with the ro-
tor. Participants in our study often found the two-finger rotation
gesture used to activate the rotor difficult to perform consistently.
As a result, they frequently triggered accidental actions or failed
to correct errors as intended. Performing the two-finger rotation
gesture also required fine motor control, adding another layer of
difficulty. Some even rotated the entire device in an effort to mimic
the gesture. This underscores how unintuitive and physically de-
manding the rotor interaction can be (see Figure 2). The two-finger
rotor interaction was rated: 2, 1, 7, 5, 4, 1, 2, 5 by the eight par-
ticipants (on a SEQ scale where 1 = very difficult, 7 = very easy).
Mean score 3.38±2.19 and many found rotor interaction difficult.
User P3 who gave the rating 7 may have misinterpreted the scale
(i.e., thought 7 is difficult) because their responses indicate that
they found the rotor interaction extremely challenging. Four par-
ticipants expressed strong dissatisfaction, preferring the tedious
backspace method over the frustrating rotor interaction. Apple’s
fixed two-finger touch-and-rotate gesture for the rotor can’t be
customized or remapped, making changes difficult. Even if this
rotor touch gesture could be altered, it wouldn’t enable screen-free
text editing, which is a core benefit of GestureVoice. This allows a
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"I use the rotor, don’t like it though. If you are not careful while doing the correction, you can edit the wrong thing. Sometimes while I am
speaking, it does not understand me."
"Swiping up/down using a rotor does not tell me exactly where I am."
"The actual rotor is very cumbersome to rotate."
"I can not understand where the cursor is placed, start of the word, end of the word, before or after the space. This is very confusing."
"I like using voice to edit text, but sometimes I have to redo the entire message because it picks up something different from what I actually
said. That is annoying."
"Dictation doesn’t always work reliably. Voice works better for short texts, but with longer messages, it often misses nuances. It’s frustrating
to make corrections in long paragraphs, and I usually make fewer mistakes when typing than using voice, but typing takes more time."
"I usually use voice to send short texts — like saying I’ll arrive in 10 minutes, but background noise often causes errors. I end up having to
retype or erase the whole thing and say it again. It usually takes 3–4 tries to get it right. It’d be easier if making small corrections to the text
were simpler."

Table 2: User responses to the question ’Is text editing a difficult task?’ highlighting various challenges encountered during text
editing.

Sentence 1
Sentence 2

Sentence 3
Sentence 4

Sentence 5
0
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Figure 3: Mean time taken by blind users to correct induced
errors in sentences, comprising the time spent navigating
to the error (text navigation) and correcting the error (text
correction). Pink bars represent time spent navigating to
errors, green bars represent time spent making corrections
once errors are located, and the red dashed line represents the
5-minute threshold, beyond which the task was considered
incomplete.

blind person to edit text on their phones without needing to take
them out.

Our analysis also showed that navigating to the error location
(see Figure 3) often took considerably longer (average 3.28 minutes)
than performing the correction itself (average 1.2 minutes) to cor-
rect a single sentence. This issue became even more pronounced
when navigating through longer pieces of text, where precise cur-
sor placement is essential. In such cases, users found themselves
having to move back and forth repeatedly to figure out where the
cursor was located, increasing both the time and effort required to
complete the correction.

3. Wearables offer potential for screen-free interaction
combined with voice. A majority of participants (6 out of 8) re-
ported owning a smartwatch, with most using them frequently (Ta-
ble 3). They use their watches for quick interactions such checking
notifications, getting directions, or sending short dictated messages,
particularly in public or while mobile. Several noted that using the
watch felt safer and less cumbersome than taking out their phone

S.No. Do you have a
smartwatch?

What type of
watch?

Frequency of use

1 no - -
2 yes Pixel everyday
3 no - -
4 yes Apple everyday
5 yes Apple sometimes
6 yes Apple sometimes
7 yes Apple rarely
8 yes Apple sometimes

Table 3: Summary of participant responses regarding smart-
watch usage, watch type and the frequency of use.

in potentially risky environments. One participant mentioned pre-
ferring the watch after dropping their phone, stating, “I just use the
watch now, pulling out the phone again feels too risky.”

Despite the convenience for quick tasks and voice dictation,
participants universally agreed that performing text corrections
on the smartwatch was currently impractical or impossible. This
limitation, combined with occasional voice recognition errors, often
led to users sending messages with errors rather than attempting to
fix them on the watch or retrieving their phone. As one user put it,
“If the watch gets it wrong, I just send it anyway — there’s no way
I’m fixing it there...” This highlights a critical gap: wearables are
convenient for mobile input but lack effective editing capabilities.
However, this widespread adoption and preference for mobile use
suggest wearables are a promising platform for new interaction
techniques.

Thus, voice input and wearable interaction compliment each
other and, when combined, may overcome the limitations of each
modality alone. This motivates the exploration of novel wearable-
based interaction models for text editing, such as the one proposed
in this work.

4 GESTUREVOICE: SCREEN-FREE TEXT
EDITING FOR BLIND USERS

In this section, we describe GestureVoice, a multimodal assistive
technology that enables a screen-free text editing experience by
combining hand gestures with voice commands. With GestureVoice,
one can use hand gestures to navigate to the error location and
use short voice commands to execute the editing action, without
touching their smartphone.
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Figure 4: Illustration of the interaction with the GestureVoice system for blind users. (1) Step 0: an example where the user
attempts to change "has" to "have" in the sentence "I has apples." (2) Step 1: use the mid-air circle gesture to select a granularity
(3) Step 2: Set to "word" granularity. (4) Step 3: Use the watch crown rotation to move to the error location quickly instead of
word-by-word and select the entire word "has." (5) Step 4: use the voice command to replace has with have, and (6) Step 5: User
hears the corrected sentence.

To achieve this, we implement three core components: (1) Gesture-
based rotor interaction that enables hands-free granularity selection
using mid-air gestures, (2) Adaptive crown navigation that allows
the user to move to the error location quickly, and (3) Integration
with voice commands for editing. Figure 4 shows the flow of this
screen-free text editing experience.

4.1 Mid-Air Gesture for Granularity Selection
Our preliminary user study shows that rotors provide an intuitive
way for navigation by allowing the user to choose the right gran-
ularity. However, touch interaction associated with the rotor is
non-intuitive and difficult. Instead, GestureVoice decouples the ro-
tor’s underlying functionality from the interaction modality by
replacing the touch interaction with gesture based interaction. In
GestureVoice, we choose the "mid-air circle" gesture for interaction.
Analogous to the touch rotor, this circle gesture cycles through the
available granularities (character→ word→ line→ sentence→
character) with each rotation. The system confirms the selection
via VoiceOver audio feedback.

We chose the circle gesture as it is intuitive and mimics the
natural use of the touch screen rotor, and we design a gesture
detection algorithm to accurately detect this gesture. However,
users can have varied gesture preferences. We envision that one
can replace the circle gesture with a different hand gesture if needed;
however, the system will need to design the corresponding gesture
detection algorithm.

Gesture Detection Process: The goal is to recognize the mid-
air circle gesture accurately and robustly using the Inertial Mea-
surement Unit (IMU) sensor data captured from the smartwatch. In
this work, we only use data from the gyroscope, which captures
the rotational motion of the gesture.

We borrow ideas from related work [28] and use a time-series
template matching algorithm focused on identifying the "gesture
nucleus". The gesture nucleus represents the core of the gesture
after the user gets into position to perform the gesture and before
the user gets out of the position. Nucleus is the core pattern of

movement that occurs during the main execution phase of a gesture,
excluding the preparation and retraction phases. Previous work [28]
has shown that this nucleus is user invariant and has a consistent
pattern. Therefore, once we extract the nucleus, we only need
to match it to a pre-determined circle template to recognize the
gesture.

The process begins by calculating the magnitude of the 3-axis
gyroscope signal:

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =

√︃
𝑔𝑥2 + 𝑔𝑦2 + 𝑔𝑧2 (1)

where 𝑔𝑥,𝑔𝑦,𝑔𝑧 are the instantaneous gyroscope readings.
Next, to identify the nucleus in this magnitude signal, we use

energy-based thresholding techniques [28]. We use an overlapping
sliding window technique to iterate over the magnitude signal. For
each window position, we calculate the energy change compared
to the previous window. Windows that show maximum energy
change are marked, and they indicate the boundaries where the
gesture nucleus begins and ends. We discard any windows marked
that are too close. The intuition here is that the speed of the gesture
changes after the user gets into position to perform the gesture and
gets out of position after the gesture; by identifying these change
points, we can identify the nucleus.

After isolating the nucleus segment, we compare it against a pre-
defined template representing the canonical mid-air circle gesture.
For this comparison, we implement the Fast Dynamic TimeWarping
(DTW) algorithm [44]. DTW algorithm excels at handling temporal
variations, allowing us to recognize gestures performed at differ-
ent speeds or with slight timing variations across the users. The
DTW algorithm computes a distance score reflecting the similarity
between the detected nucleus and the template, accommodating
variations in speed and timing. If this distance is below an empiri-
cally set threshold (𝜃𝐷𝑇𝑊 = 10.0), a valid gesture is confirmed. A
significant advantage of our detection model is that it eliminates the
need for individual user calibration or training. The template match-
ing focuses specifically on the gesture nucleus sequence, which
remains consistent across different users [28]. We implement the
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nucleus detection algorithm on the smartphone that pairs with the
smartwatch. The user initiates the process by tapping on the watch.
On recognizing a tap, the watch begins streaming gyroscope data
to the phone via Bluetooth. This ensures that non-intentional hand
movements do not trigger the gesture detection algorithm.

4.2 Adaptive Crown-Based Cursor Navigation
The current navigation method requires users to move step-by-
step—whether that’s by word, sentence, or character—depending
on the selected granularity. While precise, this approach can be
frustratingly slow, as we observe in our preliminary study.

To address this, GestureVoice leverages the watch crown to offer
a more fluid and intuitive navigation experience. Instead of rigid
steps, the speed at which the user rotates the crown determines
how quickly they move through the content. A fast spin jumps
quickly across multiple steps, perfect for covering long distances. A
slow, deliberate turn allows for precise, fine-grained control—ideal
when the error is nearby.

We chose the watch crown because it’s a physical dial that
provides natural feedback as a user turns it. Users can feel dis-
tinct "clicks" as they rotate the crown, which match the movement
through text at their chosen level (character, word, or sentence).
This physical feedback helps users understand exactly how far
they’re moving. We combine this physical feedback with voice
output from the screen reader. As the user turns the crown and
the cursor moves, the screen reader reads out each selection in
real-time. For example, when moving word by word, each click of
the crown advances to the next word, which is immediately spoken
aloud. This combination of physical feedback and sound helps the
user to know their position in the text.

Other gesture options could work alongside or instead of the
crown. Gestures like rotating on the edge of the watch dial or multi-
finger circular motion gestures could be potentially used. In future
versions, we plan to let users choose their preferred gesture method
based on their own needs and abilities.

Mapping Crown Rotation to Cursor Movements: The main
challenge now is tomap the rotation of thewatch crown to the speed
of navigation for the cursor. The system converts the continuous
turning of the watch crown into a sequence of discrete steps. Every
crown rotation produces a raw angle value (Δ𝜃 ), capturing both
how far and in which direction (forward/ backward) the crown
is turned. We smoothen the raw values to prevent over-sensitive
reactions. Smoothening is achieved by dampening this raw input
value using an empirically determined threshold 𝛼 = 0.5:

Δ𝜃𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 = 𝛼 · Δ𝜃 (2)

The smoothed value, Δ𝜃𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 , determines the intended cursor
displacement direction and magnitude. The smoothed rotation is
then converted into discrete cursor steps. This is where adaptive
speed comes in:

Δcursor_steps = sign(Δ𝜃𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 )·min( |Δ𝜃𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 |,MaxStepsPerUpdate)
(3)

In this equation, direction is determined by the sign of the rotation
(forward or backward). Step Size depends on how fast the crown
was turned. A slow, small turn results in a small smoothed value,
typically producing a single step. A faster rotation yields a larger

Δ𝜃smoothed, requiringmore steps. Cappingwith𝑀𝑎𝑥𝑆𝑡𝑒𝑝𝑠𝑃𝑒𝑟𝑈𝑝𝑑𝑎𝑡𝑒

(e.g., 1 or 2) ensures stability. Even rapid crown spins won’t cause
the cursor to jump unpredictably far. Instead, fast rotations lead to
several small updates in succession, preserving user control.

The computed number of steps is sent from the smartwatch
to the smartphone, which then updates the cursor position using
accessibility APIs. As the cursor lands on each word, the system
highlights it and announces the word, mitigating cursor ambiguity.

4.3 Voice Command Interface for Editing
Once the user navigates to the error location, GestureVoice uses a
simple voice command to specify the text editing action. This pro-
cess begins with capturing speech via the watch microphone. The
audio is transcribed to text on the smartphone (using 𝑆𝐹𝑆𝑝𝑒𝑒𝑐ℎ𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑟
on iOS). The system parses this text to identify supported commands
and associated parameters from a predefined grammar, which in-
cludes:

• Basic editing: "delete", "type [text]", "insert [text]", "change
[text]"

• Formatting: "bold", "italic", "underline"
• Punctuation: "period", "comma", "question mark"
• Navigation/System: "cursor position", "read", "unselect",
"correct"

If a valid command is found, the corresponding action is executed
in the text view at the current cursor position. Most commands in
our system implement straightforward logic directly coded into
the application. For example, "delete" removes the selected text,
while "italic" transforms the selected text to italic style formatting.
However, the "correct" command works differently. Instead of using
fixed rules, we leverage a Large Language Model (LLM) to provide
intelligent text correction. The system sends the current sentence
to our integrated LLM, which analyzes the text for grammatical
errors, contextual inconsistencies, and other language issues. The
model considers both grammar rules and the surrounding context
to generate the most appropriate correction. We use an external
T5 grammar model [23]. Running the LLM inference on the phone
for sentence correction takes 4.5 sec on average. Once processed,
VoiceOver announces the specific changes made (such as fixing
verb tense or adjusting punctuation), giving users clear feedback
about how their text was modified.

4.4 Implementation Details
The GestureVoice prototype is built for iOS, using an Apple Watch
and an iPhone. The two devices communicate via Apple’s WatchConnectivity
framework for real-time transfer of IMU data, crown events, and
commands. On the Apple Watch, IMU data is buffered and analyzed
for gesture detection (Section 4.1). Crown input is captured using
the digitalCrownRotation API. Both gesture and crown events
are packaged and sent to the iPhone.

The iPhone app handles incoming messages, tracks system state
(e.g., current granularity, voicemode), and interacts with a UITextView
and the VoiceOver screen reader. Cursor navigation is implemented
using the UIAccessibilityCustomRotor API, enabling crown-
driven, programmatic cursor control. Voice input (Section 4.3) is
transcribed using SFSpeechRecognizer, then parsed to determine
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Text PreferenceID Gender Age Phone Screen Reader
Familiarity Composition Editing

P1 F 53 Android Proficient Voice Backspace and re-type
P2 M 60 Android Proficient Voice Rotor, backspace, re-voice

P3 M 45 iOS Proficient Keyboard (short text) and
Voice (long texts) Rotor and re-voice

P4 F 37 iOS Proficient Keyboard and
Voice (short messages) Rotor and re-type

P5 M 60 iOS Proficient Keyboard and
Voice (long texts) Rotor and re-type

P6 M 58 iOS Proficient Voice Backspace and re-voice

P7 F 50 iOS Proficient Keyboard and
Voice (long texts or outdoors) Backspace and re-voice

P8 F 41 iOS Expert Keyboard and
Voice (hands occupied or at home) Rotor and re-type

Table 4: The first five columns in the table show the demographics and smartphone usage information. The last two columns
show participants’ text correction preferences (discussed in §5.8).

commands. Text edits—cursor movement, deletion, insertion, for-
matting—use standard iOS text APIs. Audio feedback is generated
via: UIAccessibility.post(notification: .announcement, ar-
gument:...) Text corrections associated with the "correct" com-
mand are performed using async REST calls to a Hugging Face
model endpoint. As mentioned earlier, we use an external T5 gram-
mar model (Grammarly coedit-large via Hugging Face API [23]).
The CoEdIT (Collaborative Editing) model is built upon FLAN-T5
and fine-tuned on diverse text revision instructions, offering gram-
mar, spelling, and stylistic corrections. Input to the T5 model, an
encoder-decoder architecture fine-tuned on instruction following,
is the erroneous sentence and output is the corrected sentence. We
use the prompt: grammar: [text]. For user feedback, the system
announces the corrected sentence and correction type. T5 was se-
lected for its lightweight architecture and low on-device inference
time (∼ 4.5 seconds); the correction model can be substituted with
any equivalent language model.

While the current implementation targets iOS, the architec-
tural principles and interaction modalities could be adapted to
Android using corresponding APIs like 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑒𝑟𝑣𝑖𝑐𝑒 (for
screen reader interaction), 𝑊𝑒𝑎𝑟𝑎𝑏𝑙𝑒𝐿𝑖𝑠𝑡𝑒𝑛𝑒𝑟𝑆𝑒𝑟𝑣𝑖𝑐𝑒 (for watch
communication), Android’s Speech Recognizer, and standard text
view manipulations. Additionally, to enable other researchers to
explore this domain, we have made the iOS mobile and compan-
ion watch app implementation of GestureVoice available at: https:
//github.com/SBUNetSys/GestureVoice.

5 EVALUATION AND RESULTS
We conducted a comprehensive user study based evaluation of
GestureVoice. The IRB-approved user study involved eight (8) blind
participants. Participants were asked to correct sentences with
induced errors using two methods: (1) their standard screen reader
editing techniques that they typically use (called "default screen
reader editing"). All eight participants in our study were familiar
with iOS screen reader, with seven being proficient and one being
an expert, and (2) the GestureVoice-based text editing we described
in §4.

Our evaluation focused on three key aspects: (1) task completion
rate and time taken for error correction, (2) accuracy of gesture
detection, and (3) subjective user feedback. The key findings are:

• GestureVoice improved task completion time by 53.80% com-
pared to VoiceOver and achieved a 100% task completion
rate.

• The gesture recognition algorithm achieved a high accuracy
of 97.5% for mid-air circle gestures, enabling reliable screen-
free interaction.

• While proficient users benefit most significantly from our
system, even expert screen reader users recognize the value
of GestureVoice for text editing on-the-go

5.1 Participants and Apparatus
The study involved 8 blind participants (4 female, 4 male) aged
41–60 years. Six participants were highly experienced iPhone users
and proficient with Apple’s VoiceOver screen reader, while two
participants primarily used an Android phone but were familiar
with VoiceOver (see Table 4). 7 participants from the previous pilot
user study were part of this study. For the experiment, we developed
a custom iOS app running on an iPhone 15 Pro, fully compatible
with VoiceOver, which served as the primary interface for the text
correction tasks. We developed a companion app for the Apple
Watch Series 10 to stream gyroscope sensor data to the iPhone
when a tap was detected. When a long press was detected, the
smartawatch used the microphone to recognize commands. For
collecting the gesture traces, we sampled IMU data at 100 Hz and
transmitted via Bluetooth to a MacBook M1 laptop, where a custom
data logger application stored the data for offline analysis.

5.2 Design and Procedure
We designed a within-subject experiment to compare the two text
correction methods for blind users. The independent variable were
the text correction methods. Participants were tasked with cor-
recting errors in sentences containing intentional omissions, sub-
stitutions, or insertions (see Table 5). The correct version of each
sentence was made available through the screen reader, and partic-
ipants could hear it by tapping the reference sentence. Sentences

https://github.com/SBUNetSys/GestureVoice
https://github.com/SBUNetSys/GestureVoice
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Error Type Sentence with Error Corrected Sentence

Omission
She went to ˆ store yesterday. She went to the store yesterday.
She ˆ going to buy new car next month. She is going to buy new car next month.
They ˆ waiting for bus at ˆ corner. They are waiting for bus at the corner.

Substitution
He gived me the book yesterday. He gave me the book yesterday.
We buyed groceries for dinner tonight. We bought groceries for dinner

tonight.
The students writed their essays last
week.

The students wrote their essays last
week.

Insertion

My sister she works at the hospital
downtown.

My sister works at the hospital down-
town.

The document that I wrote it contains
important information.

The document that I wrote contains im-
portant information.

When the professor he explained the
concept, I understood it.

When the professor explained the con-
cept, I understood it.

John he is going to to visit his parents
tomorrow.

John is going to visit his parents tomor-
row.

Table 5: Types of errors used in the text correction tasks during the user study

for the error correction task were picked using the error distribu-
tion used in Palin et al.’s mobile typing dataset [39]. This dataset is
widely used for other text editing studies [58, 60]. We used these
sentences to standardize the evaluation across users and alternate
techniques. The order of sentences was randomized for each par-
ticipant.

Default ScreenReader Editing:We presented a 5-minute train-
ing session on VoiceOver and screen reader editing techniques for
uniformity, but all 8 participants were already familiar with these
functionalities. As shown in Table 4, participants used various edit-
ing methods matching their real-world preferences, including: 1.
Backspace and re-typing (P1, P6): These participants deleted text
using the backspace key and then re-entered the correct content. 2.
Rotor navigationwith re-typing (P4, P5, P8): These participants used
the VoiceOver rotor to navigate to specific locations in the text and
then manually typed corrections. 3. Rotor with voice re-dictation
(P2, P3): These participants combined rotor navigation with voice
input for corrections. 4. Backspace with voice re-dictation (P6, P7):
These participants preferred deleting erroneous text with backspace
and then using voice to re-dictate the correct content.

All participants were proficient with VoiceOver, with one (P8)
self-identifying as an expert user.

GestureVoice Text Editing: In the GestureVoice method, par-
ticipants received a 5-minute training session on how to use the
contacltess text editing platform. The participants were given a test
sentence: "I has apples." We then demonstrated how to perform
the mid-air circle gesture while wearing the smartwatch to change
granularity and how to use the adaptive crown cursor with variable
speed to navigate to the error location. They were presented with
the list of voice commands that could be used to perform the edit ac-
tion. To initiate the session, participants tapped on the smartwatch,
activating the gesture detection algorithm. As they performed the
mid-air circle gesture, the screen reader provided audio feedback,
guiding them through various granularity levels (character, word,
line). Once a granularity level was selected, participants used the
watch crown to navigate through the text at that granularity level,
rotating clockwise to move forward and counterclockwise to move
backward. For text operations such as read, deletion, replacement,

or insertion, participants could use voice commands triggered by a
long press on the watch. Participants familiarized themselves with
the audio and haptic feedback provided in the system to perform
screen-free text editing.

For each participant, the experiment included two correction
methods (default rotor and GestureVoice) and ten trials per method
(10 erroneous sentences), resulting in a total of 8 × 2 × 10 = 160
trials.We used counterbalancing to control for order effects between
default screen reader editing and GestureVoice, alternating starting
condition across participants.

Finally, to evaluate the gesture detection accuracy, during the
study, we collected gesture traces using the IMU sensors on the
smartwatch as participants performed various gestures and eval-
uated them offline. To obtain ground truth data, we also recorded
videos (showing only participants’ hands) during the text correction
and gesture tasks.

5.3 Task Completion Rate
We report a trial as complete if the user successfully corrected
the erroneous sentence to match the target sentence. Any trial
that exceeded 5 minutes was marked as incomplete. Using the
default screen reader editing, participants completed 158 out of 160
trials, resulting in a 98% task completion rate. With GestureVoice all
users successfully corrected the sentences, achieving a 100% task
completion rate.

The two incomplete trials with the default screen reader method
show specific interaction barriers. In one case, the user struggled
to navigate the rotor menu, repeatedly cycling through commands
accidentally without being able to select the desired granularity. In
the second case, the user selected the correct granularity but edited
incorrect portions of the text due to cursor position ambiguity - a
common challenge with screen readers, where users lose track of
their exact position within the text.

5.4 Task Completion Time
The task completion time was measured from the moment the
experimenter clicked the "record" button to the time they clicked
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Figure 5: Comparison of task time between theDefault screen
reader based editing (pink) and the screen-free GestureVoice
(green) for blind users. GestureVoice is 39.69% faster for mov-
ing the cursor to error location, 40.66% for making the edits.
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Figure 6: Time reduction for correction tasks using the Ges-
tureVoice (green) compared to the Default screen reader
based editing (pink) across different users. The proposed
GestureVoice is 53.80% faster than the default screen reader
for text editing. The time reduction % is annotated on top of
each bar.

"stop recording" after completing the correction. This time metric
captures the duration users took to navigate to and correct errors.
Figure 5 shows that our proposed gesture rotor method resulted in a
53.80% reduction in average correction time compared to the default
rotor method. GestureVoice significantly accelerates the text editing
process for blind users. It enables 39.69% faster cursor movement
and selection, due to intuitive mid-air gestures for quick navigation
granularity adjustments and the precise control offered by adaptive
crown-based navigation. Furthermore, the use of efficient voice
commands for edits results in a 40.66% speedup compared to touch-
based screen reader interactions.

Figure 6 shows the percentage reduction in task completion
times per user when using our proposed gesture rotor compared
to the default rotor. The time savings were significant for 7 out
of 8 users. The average time reduction was approximately 44.96%,
81.43%, 64.18%, 47.97%, 71.08%, and 50%, and 70.32% respectively
for the 7 users. A paired-samples t-test confirmed that the time
difference was statistically significant (𝑡7 = 3.55, 𝑝 = 0.0093).

Participant P8, who hadmore experience with screen readers and
accessibility tools demonstrated marginal improvement of 0.47%.
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Figure 7: Mean time taken by blind users to correct differ-
ent error types (Substitution, Insertion, Omission) using
the default screen reader editing (pink) and the proposed
GestureVoice screen-free editing (green). The proposed Ges-
tureVoice shows significant time reductions for Substitution,
Insertion and Omission errors.

Due to their familiarity with the existing system and reliance on
learned muscle memory for interacting with the default rotor, they
completed the correction tasks in almost as quickly using the default
rotor and did not see benefits in terms of time when using the
GestureVoice for interaction. This expert user has years of experience
teaching accessibility tools at the NYC Public Library. However,
they appreciated the idea of GestureVoice and even commented how
such a system could be useful for their students, as they see a lot
of screen reader users struggle with the rotor interaction. They
mentioned they would like to use GestureVoice when on-the-go or
when they can not use their phone.

The 53.80% average reduction in task completion time highlights
the frustrating editing process with current editing methods. For
context, editing a typical document containing 10 errors like those
shown in Table 5 would require approximately 17 minutes with
traditional screen readers but only about 6.5 minutes with Ges-
tureVoice. This time-saving changes the texting workflow for blind
users, shifting the editing process from a tedious to a more natural
writing experience.

5.5 Error-Specific Performance Analysis
Different error types present unique challenges for blind users
during text editing, each requiring specific interaction patterns
and cognitive load. Understanding how GestureVoice impacts each
error type provides insights into where the system offers the most
significant benefits in real-world scenarios. We evaluated three
common error types: substitutions, insertions, and omissions. As
shown in Figure 7, the GestureVoice considerably reduced the time
required for all the kinds of errors. Each error type required different
editing operations, with our system showing distinct advantages
for each scenario.

To correct the substitution errors, participants were required
to precisely navigate and replace the incorrect text with the cor-
rect version ("change [text]" commands). Participants achieved the
most significant improvement, reducing correction time by approx-
imately 66% (42 seconds vs. 127 seconds average (see Table 6)). The
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Error Type Default (s) GestureVoice (s) Reduction (%)
Substitution 127 42 66%
Insertion 95 32 66%
Omission 83 42 49%

Table 6: Performance comparison by error type showing the
average time (seconds) required to correct each type of error
using the default screen reader versus GestureVoice.

combination of gestures and voice replacement commands elimi-
nated the multiple rotor manipulations and keyboard interactions
typically needed for text substitution.

Insertion errors primarily involve deletion operations. This error
type showed the greatest relative efficiency gain. Users completed
these corrections in nearly one-third of the time required with
traditional methods (32 seconds vs. 95 seconds average (see Table 6)).
Screen readers announce the location of the cursor or focused item,
but users often struggle with cursor ambiguity, not knowing if the
cursor is at the start or end of a word, which can lead to deleting
the wrong content. Our system’s straightforward "delete" voice
command, paired with precise crown-based navigation, provided
clear cursor positioning feedback, eliminating this ambiguity.

Even for omission errors, which require adding missing text
through "insert [text]" commands, participants maintained signifi-
cant performance advantages with our system (42 seconds vs. 83
seconds average (see Table 6)). In traditional screen readers, users
navigate through content using touch gestures, but often face chal-
lenges determining exact cursor position—whether it’s at the end
of a word or after a space. GestureVoice’s algorithm figures out if
users are trying to insert at the character or word level, and adds
spaces in the right places. This makes it much easier for users to
add missing text without having to worry about where the cursor
is exactly placed or if they need to add spaces themselves.

These findings demonstrate that GestureVoice’s combination of
gesture-based navigation and voice commands directly addresses
themost challenging aspects of text editing for blind users—maintaining
awareness about the location of the cursor and reducing the steps
required for the editing operations.

5.6 Accuracy of Gesture Detection
For the alternate gesture interaction to be successful, gesture detec-
tion needs to be highly accurate. Any inconsistency or inaccuracy
in gesture detection could lead to frustration and hinder the usabil-
ity of the system. To evaluate the reliability of gesture detection, we
analyzed the offline gesture traces collected during the user study.

Figure 8 shows the detection accuracy across the users with an
average accuracy of 97.5%. Participants were asked to rate the ease
of performing each gesture using the SEQ scale (where 7 represents
"very easy" and 1 represents "very difficult"). The mid-air circle
gesture received a 5.6 mean score. 5/8 users liked the mid-air circle
gesture as it is hands-free and mimics the use of rotor. Partcipant
P4 mentioned that she would prefer a flick wrist gesture over the
circle gesture. The latency for gesture recognition on smartphone
is 11 msec on average and the it takes 46 msec to stream gyroscope
data from the watch to the phone. This shows that GestureVoice can
work in real time with participants not perceiving any delays when
performing text editing.
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Figure 8: Gesture detection accuracy across blind users for the
Mid-air Circle gesture (orange). The dashed line indicates the
90% accuracy threshold. Gesture detection accuracy varies
across users, with both gestures being recognized with high
accuracy for most participants.

5.7 Detailed Performance Analysis
To provide a more comprehensive understanding of user inter-
actions and system performance, we analyzed additional metrics
from the user study, including error rates, correction strategies, and
command usage patterns.

5.7.1 Error Rates and Correction Attempts. Although GestureVoice
achieved complete task success across all trials, users did experience
occasional recognition errors during interaction. Speech recogni-
tion proved to be the primary source of errors, occurring in 22 of
80 trials (27.5%) when voice commands were misunderstood by the
system. Most of these issues were quickly resolved—20 trials needed
just 2 retry attempts, while only 2 trials required 3 attempts before
the system correctly recognized the command. Gesture recognition
was notably more reliable, with errors appearing in just 2 trials
(2.5%), both of which were corrected after 2 retry attempts.

5.7.2 Navigation Granularity Preferences. When examining how
participants navigated through text, a clear pattern emerged favor-
ing word-level granularity. Participants chose word-level naviga-
tion in 98.75% of trials, suggesting this level offers the right balance
between control and efficiency for correction tasks. Character-level
and line-level options were rarely selected, indicating that word-by-
word movement matches how users naturally think about editing
text.

5.7.3 Comparison of Correction Strategies. The approach users
took to fix errors varied significantly between systems. With stan-
dard VoiceOver, half of the participants (4 out of 8) resorted to
deleting entire sentences and retyping them from scratch, whether
through manual typing or dictation. While this method guarantees
accuracy, it demands considerable time and mental effort. With Ges-
tureVoice, this approach disappeared entirely. Every participant in-
stead made precise, targeted corrections using voice commands
combined with gestures. This shift in behavior shows that Ges-
tureVoice opens up efficient editing techniques that were previously
difficult or impractical with conventional screen readers.
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Figure 9: Mean SEQ ratings for text correction using the De-
fault Screen Reader editing (pink) and GestureVoice Screen-
free Editing (green), rated from 1 (very difficult) to 7 (very
easy). The proposed GestureVoice Screen-free Editing shows
higher ratings compared to the Default Screen Reader Edit-
ing across all categories.

5.7.4 Command Usage Patterns. Analysis of voice command usage
in GestureVoice revealed distinct patterns in how participants ap-
proached text corrections. Once the appropriate granularity level
was selected, the most frequently used commands were:

• Delete commands: 41.3% of all corrections
• Insert commands: 25.8% of all corrections
• Replace commands: 24.7% of all corrections
• LLM-based auto correction: 2.5% of all corrections

The predominance of delete commands aligns with the error
types used in our study, where insertion errors (requiring deletion)
were common. The balanced usage of insert and replace commands
demonstrates that participants effectively utilized GestureVoice’s
diverse correction capabilities rather than relying on a single editing
strategy.

5.7.5 LLM-based Auto Correction Usage. The LLM-based auto cor-
rection feature was used rarely despite being covered in training:
only 2 participants tried it across 2.5% of trials. This feature, acti-
vated by selecting the appropriate granularity and saying "correct,"
was designed to automatically handle common grammatical mis-
takes. The low usage suggests that users need more time to become
comfortable with the feature during the study.

5.8 Subjective Feedback
We gathered subjective feedback from participants on several as-
pects of the text editing tasks, including overall ease of use, physical
and mental demands, error navigation, and error correction (see
Figure 9). The GestureVoice system received higher ratings across
all categories compared to the default VoiceOver based text editing.
Participants found the GestureVoice to be less physically demand-
ing and easier to navigate, which corresponds with the faster task
completion times observed. On a 7-point SEQ scale, where 7 indi-
cates "very easy" and 1 indicates "very difficult," the GestureVoice
consistently achieved higher average scores.

Furthermore, all the users expressed a preference for the Ges-
tureVoice over the default screen reader editing. Participant P8 (an

expert user), however, noted that she preferred the default rotor
due to her familiarity with it, but acknowledged, "For novice users,
or those who struggle with rotating the rotor, the gesture-based
system is very useful. When I first started using screen readers, this
would have been extremely helpful. But now, I’m too comfortable
with the default rotor." This underscores how familiarity with exist-
ing methods can shape user preferences, even when newer systems
offer benefits, especially for users who are still building their skills.

P1 described the interface as “simple, not too many gestures —
I would use it every day.” P2 echoed this sentiment, saying, “Very
helpful, I would use it daily. I don’t have to touch my mobile.” Par-
ticipants generally found the system efficient for everyday text
editing. Beyond efficiency, several users highlighted broader usabil-
ity advantages. P3 emphasized that GestureVoice could help “people
with blindness and low vision when writing text faster and more
accurately,” and believed the system could also help users with
low motor skills, explaining that it “requires very little attention,
compared to a lot of finger movement on the screen”. They added
that integrating the system with voice-supported platforms such as
Amazon or YouTube would make searching and editing smoother
and less physically demanding. P4 appreciated the tactile feedback
of the crown-based cursor navigation, remarking, “I absolutely love
the crown feature — it gives the needed control and feedback for
selecting the text I want to edit.” P5 also described the system as less
stressful than default text editing method, saying, “This is easier to
operate — I like it a great deal compared to the rotor on the phone
for text corrections.”

Additionally, participants reported being comfortable using Ges-
tureVoice in both public and home settings (mean = 6.5), and most
preferred it over the default rotor for editing text (mean = 6.75), as
shown in Table 7. It was especially favored for composing short
messages (mean = 6.63), making it a strong fit for quick, everyday
interactions. The consistently higher ratings for our gesture-based
approach across all subjective measures validate our core design
principle of mapping physical gestures to text navigation actions.
The significant improvement in mental demand ratings (6.875 vs.
3.5) confirms our hypothesis that the abstraction layer present in
traditional screen reader navigation has a substantial cognitive load,
given the absence of visual feedback. Our design approach proves
valuable for text editing tasks.

6 LIMITATIONS AND FUTUREWORK
In this section, we reflect on the current limitations of our system
and highlight potential directions for future work.

1. Performance in Mobile Scenarios
While GestureVoice performed well in controlled environments,

its effectiveness in mobile settings (e.g., walking, navigating pub-
lic spaces, or using public transportation) remains untested. For
instance, cursor control via the watch crown relies on finger move-
ments, which requires a steady hand. This can be difficult to main-
tain while walking or trying to stay balanced on a moving vehicle.
As part of future work, we will conduct more realistic experiments
in outdoor environments (or simulate outdoor environments in
controlled settings).
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Questions Mean Score (out of 7) Median Score (out of 7)
I find performing hand gestures in GestureVoice challenging. 2.37 1
I find rotating the watch crown in GestureVoice challenging. 1.75 1.5
I would use GestureVoice for text editing in public settings. 6.5 7
I would use GestureVoice for text editing at home. 6.5 7
I would use GestureVoice to compose short messages. 6.63 7
I would use GestureVoice to compose longer text entries. 6.0 6.5
I prefer using GestureVoice over default screen reader rotor for text editing. 6.75 7

Table 7: Mean and median Likert scale scores across 8 blind participants. The scale ranges from 1 (strongly disagree) to 7
(strongly agree). Higher scores indicate stronger agreement with each statement.

2. Need for diverse gestures and wearable interfaces
GestureVoice relies on mid-air gestures and crown rotation to

support text editing without requiring direct interaction with the
touchscreen.While this input method reduces reliance on on-screen
touch, it may introduce physical challenges for some users. In
general, gesture preferences can vary widely depending on factors
such as motor control, comfort, and what feels intuitive. Participant
P4 remarked, “The circular gesture doesn’t come naturally to me. . .
I think it’s a me thing. Something like flicking my wrist would be
more my style.” Participant P6 noted, “I’m a bit rough with my hand
movements, so these gestures feel kind of weird for me. Something
more subtle - like rotating just one finger would work better”. These
comments suggest that a single, fixed gesture may not suit everyone
equally. Offering customizable or alternative gestures could better
support users with different movement styles and physical needs.

Similarly, many users already use other wearables, such as head-
phones or earbuds, in their daily routines. Participant P2 mentioned,
“I use a watch sometimes, but not as frequently as my headphones.
I think it would be great if I could use that instead.” Participant P4
expressed interest in wearable rings: “I like the idea of rings. I could
just wear the ring, and instead of rotating my hand, I could rotate
my finger.” These preferences point to the value of supporting inter-
action through other wearable devices going beyond smartwatches.

3. Privacy and Recognition Constraints in Voice Input
GestureVoice supports voice input to perform simple operations

such as deleting, inserting, or replacing text, making it easier to
edit without direct interaction with the smartphone screen. While
this approach works well indoors, voice input can be less practical
in outdoor or public settings. Even with short simple commands,
users may feel self-conscious using voice input in public - especially
when editing something private. To avoid drawing attention, they
may lower their voice, which can make it harder for the system
to pick up commands accurately. As the advancements occur in
the field of Automatic Speech Recognition (ASR), more powerful
models can be explored for our use case. While GestureVoice relies
on short voice commands and is therefore less susceptible to noise
compared to longer sentences, in future work we will study the
effect of various noise environments to identify limitations and
potential areas for improvement.

4. Number and Diversity of the participants
Our findings are based on a user study with eight participants.

While the study demonstrated that GestureVoice can improve the
speed and accuracy of text editing for blind users, the small sample
size limits the generalizability of this finding. The participant group
did not represent a broad spectrum of physical abilities, such as
limited arm mobility or hand tremors. Given the promising result,

a study with a broader set of blind user population will make an
even stronger case to deploy a system like GestureVoice. Also, our
evaluation was conducted with researcher-generated sentences
rather than user-generated content, which may not fully capture
the complexity and variability of real-world text editing scenarios.

7 CONCLUSION
In this work, we present GestureVoice, a multi-modal, text editing
system that makes editing significantly easier for blind people. Our
formative study showed that text editing remains a significant chal-
lenge for blind people, primarily due to the difficulty in navigating
to the editing location and because of the difficulty in performing
certain touchscreen actions. To this end, we developed a multi-
modal gesture-based interaction paradigm where a user can use
simple hand gestures to navigate to the error location quickly and
easily and use short voice commands to make the edits. The hand
gestures are detected using sensors on a commodity smartwatch,
which is commonly available today. Our user study with 8 blind
participants demonstrated a substantial 53.80% reduction in edit-
ing time compared to the default screen reader based text editing.
Our qualitative evaluation showed that users preferred the gesture
and voice based text editing interaction because they found it to
be less physically and mentally demanding, and reported feeling
comfortable using the system in a variety of mobile scenarios.
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