
Demystifying Hardware Bottlenecks in Mobile Web
Quality of Experience

Mallesham Dasari, Conor Kelton, Javad Nejati, Aruna Balasubramanian, Samir R. Das
Computer Science Department, Stony Brook University, Stony Brook, NY

ABSTRACT
Mobile web page load time depends on three key factors:
(1) complexity of website, (2) underlying network condi-
tions, and (3) processing capability of devices. While there is
substantial work focusing on Web complexity and network,
there is little work in understanding the hardware bottle-
necks in page load process. In this poster, we analyze the
effect of hardware bottlenecks of Web pages. We also ana-
lyze the effect of GPU offloading, a commonly used solution
to speed up Web page loads.

1. INTRODUCTION
Typically, mobile web users experience a low quality page

performance compared to desktop users. Our goal is to de-
termine the root cause for this poor performance. There are
three possible reasons for this root cause. Fig. 1 shows fac-
tors influencing at different layers of page load : Application
layer (website complexity, encryption overheads), OS/HW
layer (memory and processing bottlenecks) and Network sub
layer (network wide parameters).

With the increasing speeds of Wi-Fi and Cellular connec-
tion, mobile page loads are no longer bottlenecked just by
network. Often, due to limited resources, mobile application
processor may be overwhelmed with processing of other ap-
plications and prone to slow down page rendering process.
This leads to degraded web quality of experience even when
there is enough network bandwidth available. In fact, on
mobile devices, it has been shown that the computational
tasks are the bottlenecks on the critical path during page
load process [4]. Upon receiving Web objects from the cloud,
the browser has to go through different stages of rendering
such as parsing (e.g HTML, Javscript), scripting (CSS, JS),
layout, and painting that introduces huge computation bot-
tleneck. To understand this we anatomize the impact of
hardware on web experience in mobile devices.

This problem is especially important for low-end devices.
Over 62%-68% [1] of mobile users from developing regions
(specifically India and African countries) use low quality
smartphones and experience bad web experience. This mo-
tivates us to explore hardware bottlenecks in browsing path
and improve Page Load Time (PLT) for low quality mo-
bile users. In this poster, we show evidence to suggest that
computation bottlenecks are still present in high-end mobile
devices and it becomes far worse for low-end hardware.

Prior work explored that given the same network resources
for mobile and desktop browsers, mobile devices perform
poor because of the limited processing capabilities and com-
putation interference from other applications [7]. In [4],
the performance of mobile and desktop browsers are investi-
gated and found that while the desktop browsers are limited
mostly by network, mobile browsers have computation bot-
tlenecks. Webcore [7] optimizes hardware architecture for
mobile web to improve PLT as well as to minimize energy

Scripting

GPU
CPU

Shared 
Memory

App Layer OS/HW Layer Net Layer

Web page 
complexity

Transport/network/
link/physical

Parsing Layout Painting

Figure 1: Architecture of Page Load Process

consumption. Also, many mobile browsers (Chrome, Firefox
and Edge) have come up with GPU accelerated compositing
page layers. Each browser uses software rendering or exploit
hardware accelerated rendering depending on the availabil-
ity of hardware or after user preference. Our contributions
include:

• Investigating mobile web page load performance with
respect to underlying hardware resources.

• Dissecting the page load time into critical stages (load-
ing, parsing, scripting, layout and painting) and find-
ing critical blockage points in terms of compute.

• Exploring the use of GPU accelerated compositing (hard-
ware rendering) over software rendering.

2. MOTIVATION
We first study the effect of the underlying hardware on

page load time (PLT). To this end, we exclude loading time
and measure only Page Processing Time (PPT) at the client,
with respect to different frequency governors and processor
clock rate to emulate different low-end mobile devices.

SetUp.
Our experiments are performed on a Google Nexus5 An-

droid smartphone with the chromium browser. We use Google
chrome developers tools [3] to trace browser events and cal-
culate start and end times for all corresponding events. From
this, we get total CPU time spent on individual activity
(parsing, scripting, layout and painting). We collect hard-
ware resource consumption statistics using Snapdragon Pro-
filer from Qualcomm [5]. We modify CPU clock frequency
to emulate different low-end mobile devices clock using an-
droid debug bridge tool on Linux. Typically, android gov-
ernors control frequency to dynamically adapt to balance
performance and power consumption. We experiment with



384 486 594 702 810 918 1026 1134 1242 1350 1458 1512
Clock (Mhz)

4

6

8

10

12

14

16

18
Pa

ge
 P

ro
ce

ss
in

g 
Ti

m
e 

(S
ec

)

(a)

11.9

26.0

0.50.4

61.2

12.9

27.0

0.40.4

59.2

13.0

29.7

0.50.5

56.2

13.8

30.0

0.50.6

55.1

14.4

31.6

0.50.5

53.0

16.1
31.2

0.50.5

51.8

19.636.6
0.60.642.6

Parsing
Scripting
Layout

Painting
Loading

(b)

Figure 2: (a): PPT versus Clock Frequency, (b): Dissection
of PLT into Loading, Parsing, Scripting, Layout, Painting

different frequency governors available on Nexus5. To min-
imize variances due to Internet delays, we emulate network
conditions using Linux Traffic Control tool [2]. To under-
stand impact of memory, we change memory availability by
creating different RAM disk levels (in steps of 256MB) from
available memory and assign RAM disk to memory intensive
workloads to occupy completely.

Results.
We observe a greater extent of (10sec) median PPT dif-

ference from a low-end (384Mhz which is the least available
frequency on Nexus5) to a high-end frequency (1512Mhz)
(Figure 2(a)). This is averaged for four available gover-
nors on Nexus5 (powersave, performance, interactive and
on-demand) over 50 runs. It also shows that even at a high-
end frequency, there is a median 3sec processing delay in-
curred and its way worse (14sec) at low-end frequency. This
shows that computation is serious issue in mobile devices
and there is a lot of potential to improve architectural sup-
port for good web experience.

Next, we analyze various components that make up the
PLT including parsing, scripting, rendering, painting along
with loading (networking) of objects, as a function of the
clock rate. These results are obtained using the WProf
tool [6], that provides the fine-grained component level break-
down of the PLT on the critical path. Figure 2(b) shows
that, as the clock frequency increases, the fraction of time
spent on network decreases. When moving from the highest
to the lowest clock frequency, the fraction of network loading
decreases by a median of 18.6%.

For lower frequencies, scripting (36.1%) and parsing (19.6%)
make up a large amount of the critical path, while layout
and painting contribute negligibly at all frequencies(0.5%
each). Furthermore, with increase of hardware availability,
the fraction of time spent on scripting and parsing compu-
tation decreased by a median of 7.8% each.

We further find that memory availability is also a severe is-
sue for page performance. Memory is constrained on smart-
phones, with 56.7% of the devices having less than 1GB of
RAM [1]. When comparing the PLT on smartphone devices
from 512MB of RAM to 2GB of RAM, the PPT reduced by
8 seconds in the median case, which is a reduction of 12.5%.

3. EFFECT OF GPU OFFLOADING
Next we study the effect of offloading browser compu-

tation to the GPU. Due to highly parallel nature of web
content, modern browsers are embracing GPUs to minimize

3.0 3.5 4.0 4.5 5.0
Page Processing Time (Sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Software
Hardware

(a)

1400 1500 1600 1700 1800 1900 2000
Power Consumption (mW)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Software
Hardware

(b)

Figure 3: (a): PPT versus Hw-Sw Rendering, (b): Power
Consumption versus Hw-Sw Rendering

page juddering. Compositing page layers on the GPU helps
Webpages with more images, video and heavy page draw-
ing. However, using this power hungry device is definitely
a problem for battery life particularly when run with high
performance CPU and GPU governors. We study this trade-
off.

We measured page processing time with respect to soft-
ware and hardware accelerated compositing in chrome browser
by loading the Alexa top 20 websites (averaged over 50 runs)
on Nexus5. We set the clock frequencies to 1512Mhz for
CPU clock and 400Mhz for GPU clock with interactive fre-
quency governor. Figure 3(a) shows that offloading com-
positing to the GPU reduces a median PPT of 0.5sec i.e,
12.5% reduction) for 90% of the time.

We measure power consumption (using Snapdragon Pro-
filer) during both software and hardware rendering. Fig-
ure 3(b) shows that by using the GPU for rendering, the
power consumption increases by 22% for 90% of the time.
This gap between performance and power consumption is
the key trade-off for GPU offloading.

4. ONGOING AND FUTURE WORK
We are currently working on bridging the gap between re-

source consumption and mobile web performance. Our end
goal is to identify critical bottlenecks and extraneous com-
ponents in the page load process. Our work is especially
focused on low-end mobile devices that are popular in de-
veloping regions.

5. REFERENCES
[1] http://hwstats.unity3d.com/mobile/.

[2] Werner Almesberger. Linux traffic control. Technical
report, 1998.

[3] https://developer.chrome.com/devtools.

[4] Javad Nejati and Aruna Balasubramanian. An in-depth
study of mobile browser performance. In Proc. WWW
2016, pages 1305–1315, 2016.

[5] Qualcomm Development Network.
developer.qualcomm.com/software/snapdragon-profiler.

[6] Xiao Sophia Wang, Aruna Balasubramanian, Arvind
Krishnamurthy, and David Wetherall. Demystifying
page load performance with wprof. In NSDI, pages
473–485, 2013.

[7] Yuhao Zhu and Vijay Janapa Reddi. Optimizing
general-purpose cpus for energy-efficient mobile web
computing. ACM Transactions on Computer Systems
(TOCS), 35(1):1, 2017.


