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ABSTRACT
Page Load Time (PLT) is critical in measuring web page load per-
formance. However, the existing PLT metrics are designed to mea-
sure the Web page load performance on desktops/laptops and do
not consider user interactions on mobile browsers. As a result,
they are ill-suited to measure mobile page load performance from
the perspective of the user. In this work, we present the Mobile
User-Centered Page Load Time Estimator (muPLTest ), a model
that estimates the PLT of users on Web pages for mobile browsers.
We show that traditional methods to measure user PLT for desk-
tops are unsuited to mobiles because they only consider the ini-
tial viewport, which is the part of the screen that is in the user’s
view when they first begin to load the page. However, mobile
users view multiple viewports during the page load process since
they start to scroll even before the page is loaded. We thus con-
struct the muPLTest to account for page load activities across
viewports. We train our model with crowdsourced scrolling be-
havior from live users. We show that muPLTest predicts ground
truth user-centered PLT, or the muPLT, obtained from live users
with an error of 10-15% across 50 Web pages. Comparatively, tradi-
tional PLT metrics perform within 44-90% of the muPLT. Finally,
we show how developers can use the muPLTest to scalably es-
timate changes in user experience when applying different Web
optimizations.
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1 INTRODUCTION
It is well understood that Web page load performance, also called
the Page Load Time (PLT) is critical for user engagement [7, 13]. For
example, Walmart reports 1% increase in revenue for every 100ms
reduction in PLT [7]. As a result, developers use several page load
metrics [16, 20, 32] to measure and optimize for page performance.

The critical question is: do these traditional page load metrics
measure user-centered load time? User-centered load time is the
time when a user requests a Web page until they perceive that the
page is loaded and they can start to engage with the page. Most
existing page load metrics are designed for desktops/laptops and
measure the time to load the initial viewport; i.e., the area of the page
initially visible to the user. However, anecdotally, as less content
is available in the initial viewport of smartphones, users start to
scroll [3], even while the content is still loading [19]. This means
the page load time not only depends on the page loading on the
initial viewport, but on all the viewports that a user is likely to
view.

Our goal is to define, measure, and model the user-centered
page load metric for mobile browsers. We call this metric mu-
PLT or mobile user-centric Page Load Time. Figure 1 shows
the need for a new metric. The figure shows the state of the page
bloomberg.com at the PLT time as measured by the three most
popular metrics—OnLoad [16], First Contentful Paint [32], SpeedIn-
dex [20] (See Section 3 for an in-depth description of these metrics).
There, these metrics are compared to muPLT that we obtain using
our crowdsourcing technique.

Instead of these existing methods, we propose to design a new
metric that better correlates with the user’s perceived latency. We
take three steps towards achieving our goal: i) to understand the
user’s scrolling behavior on browsers and show that mobile users
view multiple viewports before perceiving a page to be loaded, ii) to
collect the ground truth muPLT via extensive mobile user studies
that takes into account mobile-specific interaction patterns, and iii)
to develop the muPLTest model that estimates the ground truth
muPLT without requiring extensive user studies beyond an initial
training phase.

We start by designing a new crowdsourcing platform to study
mobile browser interactions. To standardize the page load process
across different network and device conditions, mobile user studies
usually show a video of the page load process [21, 46]. However,
this means that the users cannot interact with the page in terms
of scrolling 1. Instead, we create synchronized videos of multiple
1Users can also interact with page by tapping and pinching, but these interactions
either cannot be responded to by the page until the page loads or cannot be responded
to by mobile pages at all.

https://doi.org/10.1145/3379503.3403565
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Figure 1: State of the page, bloomberg.com at the PLT measured by three existing page load metrics—OnLoad, SpeedIndex, and
First Contentful Paint. This is compared to the user-centric metric we define, muPLT which measures the time when the user
perceives the page to be load. muPLT is calculated based on user studies. The existing page load metrics differ considerably
from the user-centric metric.
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Figure 2: Most traditional Page Load Time (PLT) metrics, shown on the left, measure the page load time on the initial viewport
of theWeb page, which is the part of theWeb page initially visible to users. However, the existing PLTmetrics do not correlate
well with the time users believe the page to be loaded, the muPLT. We present muPLTest , a model that accurately measures
the muPLT. muPLTest takes into account mobile Web user interactions where a user scrolls through multiple viewports on
the smartphone before determining if the page is loaded.

viewport loads and stitch them together to allow mobile users to
scroll throughwhile still keeping the page load process standardized.
We show that most users do not perceive a difference between our
video recording and the real page load.

We use our platform to collect the ground truth muPLT from
users. We explicitly ask the users to respond when they think the
page is loaded enough for them to engage with the page. However,
this explicit measure exhibits high variance across users, due to

the dual task paradigm [44], where users degrade in task perfor-
mance due to having to both interact with the page and provide
explicit feedback. Instead, we design an implicit muPLT metric that
uses fine-grained scrolling information to capture the ground truth
muPLT.

Our user studies with 300 users across 50Webpages and different
network conditions show that muPLT differs by 42-70% compared
to three most popular page load metrics. In other words, existing



Modeling User-Centered Page Load Time for Smartphones MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany

page load metrics that are traditionally used to measure mobile page
performance do not accurately capture the user-centered latency in
practice. In addition, muPLT correlates well with the explicit user
feedback and exhibits lower variance across users.

Finally, we design muPLTest to predict muPLT. The muPLTest
can be estimated automatically from browser tools and accurately
measures the ground truth muPLT. muPLTest takes into account
the page load activities on multiple viewports and exploits the ob-
servation that existing PLT metrics individually estimate different
aspects of the page load process. muPLTest first computes the tradi-
tional PLT metrics on multiple viewports and then combines them
using a simple regression to predict muPLT. Figure 2 highlights
end-to-end our approach in developing a more user-centered metric
contrast to traditional approaches. muPLTest is indeed able to ac-
curately predict muPLT, with a median prediction error of 10–15%
across the same 300 users and 50 pages.

The motivation for designing muPLTest is to allow developers
to scalably compare their page load optimizations with respect to a
user-centered metric. To this end, we show how muPLTest can be
used by developer in practice using a case study with the Server-
Push [29, 49] optimization. We show that developers can accurately
evaluate different push strategies without requiring extensive user
studies by using using muPLTest .

2 RELATEDWORK
We discuss related work in the areas of mobile interactions and
crowdsourced user studies.

2.1 User Interactions on Mobile Web Pages
There has been considerable work on studying how users interact
with mobile devices in general, and with mobile Web pages specifi-
cally. One of the earliest works to study scrolling behavior, Shreshta
et al. [39] shows that scrolling is more common than pagination
for mobile Web content. Lee et al. [41] use 3D motion tracking to
enable off-screen scrolling which results in higher user satisfaction
when interacting with large, multi-screen applications. The authors
of Spotlights [26] create a system to overlay important page content
users may miss when scrolling through large mobile pages.

In addition to scrolling there has been work studying how other
interactions, including tapping and pinching, can help identify prob-
lems in mobile page design [37]. However, tapping and pinching
are relevant to the user experience only after the pages have fully
loaded, whereas, we are interested in the time just up until the page
is loaded. In fact, certain pages are known to not be even responsive
to these interactions until after the page is loaded [34].

2.2 Mobile versus Non-Mobile quantification
There has also been considerable work differentiating user behavior
on desktop versus mobile. Studies show that the mobile Web users
perform different tasks compared to desktop Web users [9, 27].
Findlater et al. show that user interactions change between lab
versus crowdsourced studies, and depend on whether the study is
done on mobile or desktop devices [15]. XDBrowser [33], provides
a new cross-device Web browser which can automatically translate
a page design from one device type to another.

Finally, Kumar et al. develop a method to perform eye tracking
studies over Web pages with multiple viewports. They track gaze
as users scroll through pages and visualize the tracks on a single
stimulus of the stitched together viewports [30]. Their efforts show
a shift in focus away from simply quantifying the user experience
for Web pages using just the first viewport.

2.3 Crowdsourcing
Crowdsourcing has been an important tool in obtaining user data
at scale [2, 23, 38]. Past crowdsourced tasks include document edit-
ing and writing [6], researching product comparisons [22], and
automatic question and answer [24]. Recently, crowdsourcing has
been used to better define mobile specific behaviors and interac-
tions [4, 8, 14, 15].

A main challenge for crowdsourcing is that users operate outside
of a controlled setting [15, 23]. In the context of Web page loads,
this means the process can vary significantly depending on the end
user’s device and network condition. Related works [21, 34, 46]
on non-mobile browsers have standardized the page load process
by recording a video of the page load. They then let users view
the videos as though they are experiencing live loads. Our work
uses the same standardization technique, but also allows the user
to scroll.

3 PLT METRICS AND THEIR LIMITATIONS
Page Load Time (PLT) is used to measure the time to load the con-
tents of the page, after which the user can engage with the page.
Given the importance of the PLT measure for Web development, re-
searchers and practitioners have defined several metrics to measure
PLT, as we discuss below.

3.1 Traditional PLT metrics
Resource loading based metrics The most commonly used PLT
metric isOnLoad.OnLoadmeasures the time fromwhen the browser
receives the URL to when all Web page objects have been down-
loaded, parsed, and evaluated [16]. However, studies [21, 34, 40]
have shown that this metric does not correlate well with the user’s
perceived latency because OnLoad given equal importance to all
objects on the page, even those that are not important to the user.
Visual metrics SpeedIndex is a visual metric that measures the
visual rendering progress of a page. However, SpeedIndex only con-
siders the initial viewport, which is content that can fit in the users
screen, colloquially known as above-the-fold or ATF. SpeedIndex is
designed for desktops/laptops, where a user only takes into account
the page load on the initial viewport to determine if a page is loaded;
we corroborate this usage of SpeedIndex in our user studies.
First Contentful Paint, or FCP is another visual metric that measures
the time for the first object to be rendered [32]. The intuition is
to identify the earliest possible time at which a user can detect
perceivable difference in the page load. FCP also only considers the
initial viewport.
Time-to-interactivity (TTI) Recent studies from both academia
(Vesper [34]) and industry (Time-to-interactivity [36]) define page
load time based on when the user can interact with the content.
Example interactions include clicking on a link or using the auto-
complete feature of a search bar. TTI metrics also only consider the
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initial viewport [34]. We do not consider this metric in our study
because we largely consider the type of browsing behavior that
does not include such interactions with the page.
User-Centered PLT Two recent studies, WebGaze [21] and Eye-
Org [46] both show that the traditional PLT metrics, notably On-
Load and SpeedIndex, do not correlate with latency given by users
for desktop browsers. They conduct large scale, standardized user
studies to get explicit feedback on user-centered page load times.
But both studies only consider the initial page viewport.

3.2 Why do we need a new metric?
In summary existing page load metrics fall into one or both cases:

• They define the page load time in terms of the initial view-
port [20, 21, 34, 46] alone

• They focus on objective measures such as resource load-
ing [16] or visual completeness [20, 32] that may differ from
user perception

In this work, we define the muPLT which takes into account
user interaction patterns to better capture a user-centered page load
time (See Figure 1 for an explicit example). We design muPLTest
to accurately predict muPLT without the need for large scale user
studies as is done in the current literature [21, 46, 47].

4 A NEW CROWDSOURCING PLATFORM
FOR MOBILE BROWSERS

We design a crowdsourced platform to study how mobile users
interact with browsers on smartphones. All studies described in
this work are approved by our Institutional Review Board (IRB).

4.1 Crowdsourcing with user interaction
As is usual in crowdsourced studies for Web page loads [21, 34, 46],
we standardize the Web page load process to remove variability
caused by network conditions and end user devices. The common
technique [21, 34, 46] for such standardization in crowdsourcing is
to video record the process to show to users. We also include means
to filter out responses from are idling or spamming when giving
their muPLT feedback. Specifically, we reject any responses that
occurred before the first, and after the last, visual changes across
all viewports of the page [21]. Microworkers requires uploading
a proof of completion which is given to users by our user study
servers after successfully completing the study. The proof was not
provided to users who had greater than 5 rejected responses. Any
user who failed to upload their proof was not included in our final
dataset and not compensated. These measures filtered out 18% of
users.

The problem is that existing studies only video record the initial
viewport, because PLT is defined only over the initial viewport.
However, on small form factor devices, anecdotally, users view
multiple viewports even before the page is loaded [19]. To this
end, we design a study that allows the user to freely scroll through
multiple viewports, while also standardizing the page load process.

Our idea is to record a video of the load process from each view-
port of the page, stitch them together, and then play them back
simultaneously. Figure 2 shows an example page with multiple
viewports worth of content present; the viewports are numbered

1 through 6. The video recording is done until the lowest possi-
ble viewport [30]. During the study, the aspect ratio of the videos
are scaled according to the size of the participants phone. Corre-
spondingly, all coordinates for interactions, such as scrolling, are
re-scaled. We faithfully recreate Web page behavior where the page
cannot be scrolled beyond a certain point until the content is fully
loaded. We use HTTP Record and Replay [35, 42] to make sure the
content is the same at each recorded viewport.
Recording client interactionWe use client-side log analysis [17,
37] to record the user interactions. To build the logs we record the
start time, end time, and distance of each scroll via JavaScript. This
logging methodology is similar to prior work [37].
Observer effect A natural question is: does scrolling behavior
change the way the page loads? Recall that we record videos from
each viewport. If scrolling to these viewports changed how the
page loads, then the user will not experience the real page load
process during playback. Fortunately, we find that scrolling does
not change the page load process. Our experiments (not shown here
for brevity) show that OnLoad measures and the visual progression
of the page load remain the same with or without scrolling.

4.2 Qualitative analysis of the crowdsourcing
platform

Our crowdsourcing platform video records the full page load pro-
cess and shows it to the user, as though the page is loaded live. As
our studies are meant to recreate the mobile browsing experience,
a key qualitative question is if the users perceive a difference be-
tween (A) viewing the live page and (B) viewing the recorded page
through the crowdsourcing platform.

We conduct an A/B test across 30 users, for 25 of the pages in
our experiments. Each user was shown both versions of the page, A
and B, in different orders. After each pair, users were asked “Aside
from the speed of the page load, did you notice anything unnatural
when browsing either page?”.

On average, users found nothing unnatural about 22 of the 25
video pages, suggesting their experience with our mobile pages
load videos was qualitatively similar to normal mobile browsing for
the overwhelming majority of pages. The standard deviation was
3.5 pages. For the other 3 videos, on average, that were reported
as unnatural browsing, 44% of comments were of the form, “I visit
this site regularly, why did it look blurrier than usual?”. This is likely
because the videos were taken on Nexus 5 in lower quality than the
client’s native device. Additionally, 15% took the form that “The site
load contained older content from a previous date”. This was because
the standardized page load was recorded at an earlier date while
the live site loaded the most recent version of the page.

Overall, our takeaway is that the standardized videos provide a
sufficiently close mobile user experience to live Web pages during
the page load.

5 CHARACTERIZING SCROLLING BEHAVIOR
ON MOBILE/NON-MOBILE WEB PAGES

Using the crowdsourced set up described above, we explore how
mobile users scroll throughWeb pages during the page load process
in comparison to desktop users and under different tasks.
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5.1 Study Methodology
We create Web page videos as described in the previous section
under different network conditions on smartphones and desktops.
The mobile network conditions emulate 3G and 4G speeds obtained
from existing network emulators [18]. On the desktop, we choose
a network with 50ms RTT and 15 Mb/s throughput, which corre-
sponds to broadband ethernet speeds [34]. Videos were taken using
the screenrecord functionality of the Android Debugging Bridge
(adb) tool [11] and page loads are automated via remote controlling
(debugging) Google Chrome [12].

We choose the 50Web pages by taking a random sample stratified
across the categories of the Alexa Top 500 [1]. During the Web page
load, we also measure the traditional PLT metrics: OnLoad [16],
SpeedIndex [20] (estimated using videos), and FCP [32].
Devices All our recordings are done on three devices: i) 1080×1920,
4.95′ Google Nexus 5 phone using Google Chrome version 61.0, ii)
1440×2560, 5.5′ Google Pixel XL using Google Chrome version 67.0,
and iii) 1920×1080, 23′ monitor on an Ubuntu 16.04 desktop using
Google Chrome version 67.0.
Study platform We use the Microworkers platform [31] as our
crowdsourcing distribution medium. The Microworkers platform
allows researchers to specify the device (mobile versus non-mobile)
used. The study was done across 22 countries from the regions of
the Caribbean, Asia, Africa, Eastern and Western Europe and the
United States.
Study Tasks We asked the users to perform two kinds of tasks:
Task 1 (Free browsing): The first is a free browsing task similar to
related work [21, 34, 46]. We ask the users: “Provide feedback using
the submit button when you feel the page is loaded enough for
you to engage with the page." The users can go back and re-view
the page load if needed. During the experiment we track the users’
scrolling behavior, but we do not tell them explicitly to scroll or
mention that we are capturing this behavior. We conduct this study
across 200 users and 50 Web pages in total, with 50 users for the
3G study on the Nexus 5, 50 for the 4G study on the Nexus 5, 50
users for the 4G study on the Pixel XL and 50 users on the Wifi
study on Desktops. Each user saw each page in all studies discussed,
thus all analyses for each page discussed in this work are based on
feedback across 50 users. These 50 users were those who passed
our crowdsourcing filters.
Task 2 (Targeted search): The second is a more targeted task-based
study. Behavior and relative performance of users has been shown
to be highly influenced by the task they are posed [10, 28]. To this
end, we conduct a smaller scale experiment, 50 users across the
same Web pages over a single device and network condition, where
users are asked to perform the task of searching for specific objects
on the loaded page. Specifically we pose the question as “Find X",
where “X" is a distinguishable Web page object such as a specific
image or headline on each page.

5.2 User scrolling behavior on mobile browsers
We characterize how users interact with mobile browsers based on
how many viewports they view before they perceive the page to
be loaded.
Number of viewports viewed Figure 3 shows a CCDF across
pages showing the percentage of users who view more than the
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Figure 3: CCDFs of the fraction of users who view multiple
viewports before they perceive the page to be loaded. Each
point represents that y% of Web pages have x% of users, or
greater, that scroll.
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Figure 4: A CDF of fraction of users who start to scroll after
the initial viewport is fully loaded.

initial viewport before the page is loaded. Over 70% of the users
view multiple viewports in over 50% of the Web pages for Nexus 5,
with somewhat smaller values for the Pixel. This difference can be
attributed to the larger screen size of Pixel phones.
When do users start to scroll to multiple viewports? Figure 4
captures the percentage of users who start to scroll after the initial
viewport is fully loaded. We use the SpeedIndex [20] to calculate the
time when the initial viewport is fully loaded. For the Nexus 5, of
the users who scroll on 3G Networks, only 12% of users waited for
all the initial viewport to be loaded before scrolling, in the median
case. Even on the faster 4G networks, 40% still scrolled before the
first viewport loaded for the median page. For the Pixel phone the
larger screen size means that fewer users start scrolling, however
more than 80% of users on the Pixel still scrolled before the first
viewport was completed for the median page.
Number of viewports viewed before page load Figure 5 shows
the number of viewports on an average that a user scrolls before
perceiving the page to be loaded. For the median page, the median
user traverses ∼3 viewports of content before perceiving the page
to be loaded in the 4G case. The results in the case of 3G, and even
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Figure 5: CDF of the number of viewports users viewed be-
fore perceiving the page to be loaded, both on desktop and
mobile browsers. On the mobile browser, the majority of
users look beyond the first viewport of content before deter-
mining a page to be loaded. In contrast, on desktop browsers,
the median user does not view more than the initial view-
port.
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Figure 6: A CDF showing the raw number of viewports
viewed by users who were/were not familiar with each Web
page. We observe that users who are less familiar with the
page view more viewports before perceiving a page to be
loaded.

on the larger Pixel, are qualitatively similar. Taken together, our
results show that users view an average of three viewports before
deciding that the page is loaded, and do not wait for the initial
viewport to load before scrolling.
Does familiarity affect viewing? During the user study, we in-
clude a survey to report if the user has visited the page or not.
In our study, 50% of the pages are familiar to at least 35% of our
users, and 5% of our pages are familiar to least 90% of our users.
Figure 6 shows how the users mobile interaction changes based
on their familiarity with the page for the 4G/Nexus 5 pairing. It is
interpreted in the same manner as Figure 5. A user familiar with
a page views only 1.8 viewports of the page before perceiving the
page to be loaded, in the median case. In contrast, a user views a
median of 2.8 viewports on unfamiliar pages before perceiving the

page to be loaded. In other words, users who are not familiar with
pages tend to be more exploratory.

5.3 User scrolling behavior on desktop
browsers

We conducted a crowdsourced study on desktop browsers with 50
users across the desktop variants of same 50 Web pages (§4). Our
main finding, shown in Figure 5 is that the median user only looks
at the initial viewport before deciding if a page is loaded (see label
“Desktop"). This result corroborates with the wide spread focus on
the first viewport for defining page load times in desktop/laptop
browsers.

Our intuition for this result is that desktop screens are larger,
and as a result more content is available to the user during the
page load. Thus, users do not need to scroll to acquire more content
during the transient process. In contrast, smaller mobile screens
and more direct access to scrolling causes users to view multiple
viewports before engaging with the page. Our studies with scrolling
across platforms empirically confirm these points.

5.4 Targeted Task Study
We now analyze our other more task-based user study. The users
perform these tasks on the same videos described in our earlier
user study (§4). The tasks are distributed evenly throughout the
viewports of the Web pages, some require the user to scroll and
some do not. The time the user completed the task is taken as their
perceived load. This user study was conducted across 50 users and
pages, with videos recorded on the Nexus 5 on a 4G network.

Similar to the free browsing study, 70% of the users started
scrolling before the first viewport was fully loaded, even when
the task needed to be performed was in the initial viewport. We
conclude from this that the users view multiple viewports even
when they are not freely browsing.

6 MUPLT: MOBILE USER-CENTERED PLT
We define muPLT, a ground truth mobile user-defined PLT met-
ric that we obtain from the user studies. We also show that the
three traditional PLT metrics conventionally used to measure PLT—
OnLoad [16], SpeedIndex [20], and Time to First Contentful Paint
(FCP) [32] are significantly different compared to the muPLT mea-
sure.

6.1 Intuition behind the muPLT
muPLT is the time until the user perceives that the mobile page
is loaded and they can start to engage with the page. We measure
this implicitly based on the time between a user’s scrolls; the inter-
scroll time should be small when the user is only viewing/searching
the page, but should increase when the user is engaged with the
content. Restated, a long pause in scrolling suggests that the user
has likely stopped to consume the page contents and we use the
long pause to measure ground truth.

A key question is: why do we capture muPLT this way? Recent
works on desktops [21, 34, 46] have measured the user experience
by explicitly asking users when they perceive the page to be loaded.
However, this explicit feedback has high variability because of the
dual task paradigm [44]. This phenomenon states that a person’s
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Figure 7: A distribution of the time between scrolls of users
of the theonion.com on a 4G network and Nexus5 phone.We
mark user’s first inter-scroll time that is an outlier on this
distribution as their muPLT.
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Figure 8: CDFs of the standard deviations across users for
muPLT and explicit feedback. The CDFs shown is for one
phone and network but the others show quantitatively sim-
ilar results. The standard deviation ofmuPLT ismuch lower,
suggesting the muPLT is more robust than the explicit feed-
back.

ability to perform a task may degrade in the presence of having to
performing another. In our study, the user is not only interacting
with the page via scrolling, but also manually providing feedback on
their perceived load time causing higher variability across users. As
user agreement in crowdsourcing tasks is paramount [2], we wish
to reduce the variability in our user-centered PLT measurements
as much as possible.

We thus take the recommended approach by the the cognitive
science community [44], which is to implicitly measure user re-
sponses. Implicit strategies for collecting user responses have been
shown to result in much higher amounts of user agreement in the
presence of the dual task.

6.2 Ground truth muPLT
We calculate muPLT for a user on a given page as the time in
which a long pause occurs in that user’s scrolling behavior on that
page. Specifically, we define the long pause as the first outlier in

the empirical distribution of all users’ inter-scroll times. Figure 7
shows the empirical distribution of time between scrolls for all
users over 4G network when perusing the load of theonion.com.
The first point that is a statistical outlier (we use Tukey’s classical
definition [45]) is our long pause. In Figure 7, a large majority of the
scroll events (70%) are less than 2 seconds, where the first outlier on
the distribution is at 4.2 seconds. We thus measure the muPLT of
any user on theonion.com as the first time his or her inter-scroll
time exceeds 4.2 seconds.

6.3 Comparing muPLT to explicit feedback
We design the muPLT metric based on user scrolling behavior,
because the explicit feedback from the user shows high variance.
Figure 8 shows the CDF of standard deviation across users when
estimating muPLT using the users’ implicit scrolling behavior ver-
sus their explicit feedback. The results shown in Figure 8 are for
the Nexus phone on the 4G network, but the results are similar for
other combinations of phones and network conditions. Moreover,
there is agreement between the muPLT metric and the explicit
metric for user-centered PLT (Pearson correlation coefficient of .91
for 4G and .84 for 3G),

Finally, we find that on desktops, there is no need for an implicit
metric because there is general agreement among users on when
they perceive a page to be loaded. This is likely because the user is
not interacting with the page before it is loaded, focusing on only
one task, rather than the dual task. Our experiment (not shown
here for brevity) shows that there is less than a 2 second standard
deviation for the explicit feedback on desktops across the majority
of the pages.

6.4 Comparing muPLT to PLT Metrics
We now compare the muPLT to the state-of-the-art PLT metrics.
Figure 9 shows the percentage difference between muPLT and the
three most popular PLT metrics–OnLoad, SpeedIndex, and FCP.
For the median page, the difference between the user-centered
metric and the traditional PLT metric is between 42% to 70% across
network conditions. We conclude with these errors that existing
systematic PLT metrics cannot estimate the user experience of page
loads for mobiles.

We find that OnLoad still over- to under-estimates the page load
performance due to it either waiting for too much content to be
loaded, or missing dynamic content. The SpeedIndex and FCP, while
visually oriented, only consider one viewport, whereas mobile users
visit multiple viewports during the page load process (See Figure 1
for an example of these issues in practice).

7 DEVELOPING A MODEL FOR MUPLTEST

Traditional metrics such as OnLoad, SpeedIndex, and FCP can be
measured using automated tools during the page load process. As a
result, a developer can scalably and programmatically obtain these
metrics to measure page performance. However, these metrics do
not match the user perception. User-centered metrics such as uPLT
(the explicit feedback used in previous studies) [21] and muPLT
(described in this work) do capture the user defined load times on
desktops and mobiles respectively, but they are reliant on large-
scale user studies that do not scale well.
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Figure 9: CDFs of the absolute percentage errors between
muPLT and traditional PLT metrics—OnLoad, SpeedIndex,
and FCP. Traditional metrics are not good measures of user
experience as given by muPLT and see a 42% to 70% differ-
ence from muPLT.

The primary objective of this work is model the mobile user-
centered PLT (muPLT) using an estimator, muPLTest . We design
muPLTest so that: (i) it can be scalably estimated using existing
browser tools without requiring extensive user studies beyond an
initial training phase, and (b) it accurately measures muPLT.

7.1 muPLTest intuition
Our first intuition is that muPLTest will depend on different aspects
of the page load process, including the download times of objects
and visual rendering of objects. Since mobile users scroll through
multiple viewports before perceiving a page to be loaded, it is
important to measure these aspects on multiple viewports.

The second intuition is that traditional PLT metrics do already
measure different aspects of the page load. OnLoad measures the
speed at which objects are loaded, SpeedIndex measures the visual
rendering speed of the page, and FCP measures the first time a
user perceives a visual difference in the page. Figure 10 shows
the correlation between muPLT and each metric. Combining this
information with Figure 9 shows that, while no metric captures
muPLT, they do exhibit a useful linear relationship.

muPLTest combines all of these metrics together, to jointly con-
sider all these different aspects of the page load process. muPLTest
first estimates these metrics over multiple viewports and then com-
bines them linearly. Further, these metrics are standardized across
browsers (See Section 3) and are readily available toWeb developers,
thus, using only these metrics as inputs adds to the accessibility of
the muPLTest . By using existing metrics to predict muPLT, develop-
ers can easily estimate the user-centered latency without requiring
extensive user studies.

7.2 Defining page load measures across
multiple viewports

We first describe how we measure the visual progress of the page
across multiple viewports using a new metric, which we call Multi-
ple SpeedIndex. The traditional SpeedIndex metric is computed as
average visual completeness of the page. SpeedIndex measures the
page load speed by looking at video frames of the page as it loads
and computing the average time at which the pixels match the final
state of the screen from the video. Traditionally, only a video of the
first viewport is used. The formula for estimating SpeedIndex is:

Table 1: Summaries of the performance of each PLT metric
and the muPLTest to the muPLT.

Metric Absolute Error 3G Absolute Error 4G
Mean ± SD seconds

OnLoad 21.96 ± 27.7 3.91 ± 5.33
SpeedIndex 6.32 ± 6.81 4.74 ± 3.45

FCP 6.63 ± 3.30 5.07 ± 1.06
muPLTest 1.96 ± 1.61 0.727 ± 0.513

SpeedIndex =
∫ T

t=0
1 −VC(t)dt , (1)

Where VC is the visual completeness of a given viewport at time
t . We compute Multiple SpeedIndex as:

Multiple SpeedIndex =
n∑
i=1

αi ∗ SpeedIndexi (2)

s .t .
n∑
i=1

αi = 1 (3)

Multiple SpeedIndex is estimated using a simple weighted av-
erage of the SpeedIndex over multiple viewports, thereby adding
visual information from multiple parts of the page to the estimator.
For our calculation of Multiple SpeedIndex, we simply set the α
values to 1/n where n is the number of videos shown to the users
for the page. This new metric has a correlation coefficient of 0.63
with the muPLT metric on 4G; in contrast SpeedIndex estimated
over the initial viewport only has a correlation coefficient of 0.21.

Similarly, for the FCP metric, we estimate the weighted average
of FCP over multiple viewports. The OnLoad metric is the same
for all viewports because it is estimated as the total time to load
all objects, which we have shown does not change across each
viewport (Section 4).

7.3 Estimating muPLTest

We use a LASSO regression [43] to combine the new metrics es-
timated over multiple viewports to model muPLTest . Given the
nature of the scatterplot in Figure 10, we assume that a linear re-
lationship between muPLT and each metric will suffice. With this,
we can formally describe our model as:

muPLTest = w
T PLT + ϵ (4)

where PLT represents a matrix with a row for each page, and
columns for the OnLoad, Multiple SpeedIndex, SpeedIndex, and
FCP of each page. The choice of weights,w , and bias b, on the PLT
metrics are learned byminimizing the error between the regularized
linear sum of the metrics, or:

minimize
w,b

λ∥w ∥ +

n∑
i=1

(wT PLTi + b −muPLTi )
2 (5)

In order to choose the best model, we tune the LASSO for 100
values of the λ parameter and choose the result that gives the
least Mean Square Error (MSE). This common parameter tuning
procedure also performs variable selection over our PLT inputs.
To avoid over fitting, the MSE at each iteration is defined using a
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Figure 10: Scatter plots of each page loadmetric against themuPLT on a 4G network. Each time is given inmilliseconds. There
is roughly a linear relationship, highlighting our choice of a linear regression model used for the muPLTest .
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Figure 11: CDFs ofmuPLT andmuPLTest . muPLTest is close
in distribution to muPLT, with at most 15% error across
networks at the median. Compared to traditional PLT met-
rics (OnLoad, SpeedIndex, FCP) muPLTest provides a signif-
icantly better predictor to the user experience.

leave-out-5, 10 fold cross validation. The resulting model gives us a
prediction muPLTest for each page.

Of course, model training and obtaining the weights requires
ground truth muPLT values from user studies. But once trained,
muPLTest can be estimated without further user studies. In fact,
in the next section we show the muPLTest can be used to accu-
rately estimate muPLT even when the Web pages change due to
optimizations.

7.4 Evaluating muPLTest

We evaluate the effectiveness of muPLTest in terms of how well
it estimates the ground truth user-centered page load across the
50 Web pages. Figure 11 shows the CDFs of muPLTest and mu-
PLT across all the Web pages and users. The performance of each
metric in predicting the muPLT is summarized via Table 1 which
gives the means and standard deviations for each of these CDFs. In
addition, the performance of the muPLTest in terms of the Root
Mean Square Error (RMSE) of the predictions was .934 and 2.53
for 3G and 4G respectively. As to the composition of the model, all
weights were non-zero, with the Multiple SpeedIndex contribut-
ing about 7× more than the SpeedIndex to the final prediction.
Our key takeaway is that muPLTest is a good predictor of muPLT,
with a median error of 15% in the 3G network and 10% in the 4G
network.

Recall that the median error between each of the traditional
PLT metrics and muPLT was between ≈44-90% depending on the

metric (see Figure 9). In terms of the RMSE, these other metrics also
perform poorly, with the best case being 5.19 and 7.53 for 3G and
4G over the OnLoad, SpeedIndex, and FCP. Further, even models
trained using these metrics individually were only able to perform
with a max RMSE of 4.53 across networks, suggesting the power of
combining each metric in predicting the final muPLT. We use a 10
fold, leave-5-out cross validation as our estimate of the predictive
power of the model.

The correlation between muPLTest and muPLT is 0.92 and 0.84
for 3G and 4G respectively. Importantly, muPLTest can be estimated
in real time as the page loads and does not require extensive user
studies, except for the initial training.

We conclude our evaluation of the muPLTest by discussing fac-
tors which allow the model to generalize. Firstly, the RMSE of a
more general model for the muPLTest which included predictions
on 3G and 4G data was 2.21, suggesting the ability of the model to
scale across networks. Though the majority of experiments and data
were taken across Google platforms, the PLT metrics used to train
the muPLTest are all standardized across modern browsers (See
Section 3). All such browsers implement scrolling similarly [25],
alluding to the similarity in ground truth for the model on differ-
ent platforms. Further, we provide an illustrative example in the
following section for the ability of the model to make predictions
under a different network protocol.

8 USING THE USER-CENTERED MODEL IN
PRACTICE

We provide an application of muPLTest in terms of how it can
help developers choose the right Web page optimization to improve
the muPLT of their page. Many optimizations have been designed
to improve page performance [29], but these optimizations have
been designed to improve traditional PLT metrics. Their effect on
muPLT has not been a first class concern. Further, the effect of the
optimization often depends on the choice of parameters or requires
heavy configuration.

Without the muPLTest model, developers will have to launch
large scale user studies, using platforms such as EyeOrg [46], to
get user-centered PLT for each possible configuration of the opti-
mization. This clearly does not scale. Instead, muPLTest provides
a scalable model to compare optimizations with respect to user
experience. We now show how a developer can use muPLTest to
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Figure 12: Evaluating how well muPLTest estimates the
user-centered load time (muPLT) when different Server-
Push optimization strategies are applied to Web pages. The
bars show the prediction errors of muPLTest , OnLoad, FCP,
and SpeedIndex when compared to ground truth muPLT.
muPLTest differs from the ground truth by a median 7.8%
across pages. Other metrics have much larger errors.

evaluate the effect of one optimization—ServerPush [29]—under
different configurations.

8.1 Application case study: ServerPush
Server Push allows servers that host Web pages to preemptively
push objects needed to load the page to the client’s Web browser.
ServerPush is notoriously hard to get right because the right class
of objects to push depends on the Web page structure and available
bandwidth [5, 48]. Getting ServerPush right can optimize the page
load, but getting it wrong can slow the page down. For example, in
some Web pages, pushing all the JavaScripts (JS) on the Web page
is beneficial because the JS may embed further objects within the
page. But, in otherWeb pages, pushing Cascading Style Sheets (CSS)
may be more important, especially for those where rendering is
complex. Further, pushing too many objects can hurt performance
because they all compete for limited bandwidth.

We use the muPLTest model to predict the user-centered latency
when using ServerPush under the following strategies: (1) default:
no ServerPush, (2) push js : the server pushes all JS objects, (3) push
css: the server pushes all CSS, and (4) push css + js: The server
pushes all JS and CSS on the page. We implement each strategy
using our own HTTP Record and Replay [35, 42] server written in
NodeJS.

To test the muPLTest under the different strategies we randomly
selected 10 Web pages from our previous 50 pages. For each Web
page, we implement the 4 alternative ServerPush strategies dis-
cussed. We then use muPLTest to predict the user-centered PLT
for each strategy, and report the results.

To verify that our estimates are correct, we collect ground truth
muPLTest values using a user study with 50 crowdsourced users
over the Microworker platform. We use the same methodology
as previous described in Section 4. We note that this user study
is only to verify that our muPLTest estimates are accurate under
ServerPush configurations; a developer will not have to run this
user study.

8.2 Evaluating muPLTest with ServerPush
strategies

We first verify that ServerPush does indeed make a difference in
user-defined delays for page loads. Thus, a well fit user-centered
model should capture these changes.

Figure 12 shows the mean error of different metrics with respect
to the muPLT ground truth across all alternative strategies for the
10 pages. The height of each bar shows the error, in terms of the
standard deviation across the versions, for a given page.

muPLTest provides a reliable way to estimate the improvement
in user perception for different Web optimizations. The metric
exhibits a median absolute error to the muPLT of 7.8% across pages,
with the next closest being the OnLoad which exhibits a 23%median
absolute error, and a much larger error variation between the pages.
Finally all other metrics are biased in their errors, they either over or
under predict drastically. By contrast the errors of the muPLTest are
much more centered about zero, speaking to the model’s validity.

In conclusion, using muPLTest , a developer can pick the right
ServerPush strategy to specifically improve a key user experience
metric for their Web pages without requiring extensive user studies.
In practice, developers can make use of muPLTest in the same
manner to evaluate the effect of other optimizations on their pages.

9 CONCLUSIONS
We developed a complete methodology to model and estimate user-
centered Page Load Time (PLT) of Web pages on smartphones.
To do so, we created a platform for standardized crowdsourced
measurements of the user’s perception of mobile page load time.
The key difference between mobile and desktop browsing in terms
of user-interactions is that mobile users view multiple viewports
before even before the page content is loaded; in contrast, desktop
users only view the initial viewport until the page is loaded. The
crowdsourced user study we conduct allows scrolling behavior to
play a part in capturing a user’s perceived delay. We draw various
conclusions from this study, including that more than just the first
viewport of content matters to mobile users. Based on the user
study, we define an implicit perceptional metric called muPLT,
which stands for mobile user-centered PLT. We find that muPLT
differs substantially from traditional PLT metrics. Although muPLT
captures user perceived delay, it requires large scale user studies to
measure. Instead, we design an estimator muPLTest that accurately
captures muPLT. We show that our estimator can predict muPLT
to within 10-15% error at the median across 50 pages. Finally, we
show how developers and researchers can use the muPLTest to
estimate the user experience when applying different Web page
optimizations without the need for large scale user studies.
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