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Modeling the energy consumption of applications on mobile devices is an important topic that has received much attention in
recent years. However, there has been very little research on modeling the energy consumption of the mobile Web. This is
primarily due to the short-lived yet complex page load process that makes it infeasible to rely on coarse-grained resource
monitoring for accurate power estimation.

We present RECON, a modeling approach that accurately estimates the energy consumption of any Web page load and
deconstructs it into the energy contributions of individual page load activities. Our key intuition is to leverage low-level
application semantics in addition to coarse-grained resource utilizations for modeling the page load energy consumption.
By exploiting �ne-grained information about the individual activities that make up the page load, RECON enables fast and
accurate energy estimations without requiring complex models. Experiments across 80 Web pages and under four di�erent
optimizations show that RECON can estimate the energy consumption for a Web page load with an average error of less than
7%. Importantly, RECON helps to analyze and explain the energy e�ects of an optimization on the individual components of
Web page loads.
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1 INTRODUCTION
Mobile Web page performance is critical to content providers [1, 25], service providers [19], and users [3], as Web
browsers are one of the most popular apps on phones [8]. Slow Web pages are known to adversely a�ect pro�ts
[1, 25] and lead to user abandonment [3]. The importance of Web page performance extends even to mobile apps:
a recent Evans Data survey showed that three-quarters of mobile app developers polled said they include or plan
to include mobile browsers/HTML5 in their apps [2]. Not surprisingly, several optimizations have been proposed
to improve mobile Web performance [13, 14, 17, 19, 21].
An important problem that is often overlooked is the energy consumption of Web page loads. Mobile devices

are severely constrained by energy; in fact browser vendors tout their e�ect on battery life as a critical selling
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point [5, 16]. The problem is that energy and performance are separate metrics. While Web optimizations or any
changes to the Web ecosystem are often studied in terms of performance, their e�ect on energy is not easy to
measure. Not knowing the e�ect of a Web enhancement on energy consumption can have severe consequences;
a recent software update to Chrome resulted in excessive battery drain, leading to severe backlash [6].

Today, content providers and browser vendors use power monitors to measure the energy consumption of the
page load process before and after an enhancement. Power monitors that are in-built in the phone are known to
be grossly inaccurate [43]. Instead, external power monitors such as the Monsoon power monitor are commonly
used to measure power consumption of Web page loads more accurately. These external monitors have higher
accuracy, but are not easy to use (§2). Importantly, the power monitors only provide aggregate power consumption of
the device at any time, without providing any information on how much power was consumed by the individual
page load activities such as image loading or JavaScript evaluation, or how an enhancement impacted the power
consumption of these individual activities. For example, we �nd that certain ad blockers [4] that remove ads and
other malware signi�cantly increase energy consumption. A power monitor can detect this energy increase, but
can not explain why the energy changes.

Our goal in this paper is to provide: (a) quick, accurate, and �ne-grained estimations of the power and energy
consumption for a page load instantiation, and (b) meaningful analyses of the power pro�le of the Web page load.

Unfortunately, estimating the energy consumption of a page load is challenging because of:

• Transience: The page load process is relatively short-lived, ranging from several milliseconds to a
few seconds. Fine-grained resource monitoring on such short timescales to model energy consumption
is known to incur substantial overhead [23, 33]; our experiments on a Galaxy S4 reveal that resource
monitoring at a frequency of 100 Hz can incur 30% CPU overhead.
• Complexity: Web pages are complex [39]. A Web enhancement can have widely varying e�ects on
di�erent page load activities.

Thus, studying the energy impact of a Web enhancement on page loads requires understanding its e�ects
on each page load activity. Existing approaches to analyzing mobile energy typically focus on pro�ling and
modeling the resource consumption of the device during execution [33, 34] (see §8). Such approaches consider
long-running services and apps such as games, audio, and video streaming [23, 43], for which low-overhead,
coarse-grained resource monitoring su�ces. For page loads, however, coarse-grained resource monitoring is not
su�cient to analyze the energy consumption of individual, short-lived, page load activities.
We present RECON (REsource- and COmpoNent-based modeling), a modeling approach that addresses the

above challenges to estimate the energy consumption of any Web page load. The key intuition behind RECON is
to go beyond resource-level information and exploit application-level semantics to capture the individual Web page
load activities. Instead of modeling the energy consumption at the full page load level, which is too coarse grained,
RECON models at a much �ner component level granularity. Components are individual page load activities such
as loading objects, parsing the page, or evaluating JavaScript.
To do this, RECON combines coarse-grained resource utilization and component-level Web page load infor-

mation available from existing tools (§2.1). During the initial training stage, RECON uses a power monitor to
measure the energy consumption during a set of page load processes and juxtaposes this power consumption
with coarse-grained resource and component information. RECON uses both simple linear regression and more
complex neural networks to build a model of the power consumption as a function of the resources used and the
individual page load components.

Using the model, RECON can estimate the energy consumption of any Web page loaded as-is or upon applying
any enhancement, without the monitor. It is important to note that RECON’s model does not have to be trained
on all Web pages or on any enhancements. Since Web page loads exhibit high variance [40], RECON estimates
the power consumption for a given instantiation of a Web page load.
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We experimentally evaluate RECON on the Samsung Galaxy S4, S5, and Nexus devices using 80 Web pages.
Comparisons with actual power measurements from a �ne-grained power meter show that, using the linear
regression model, RECON can estimate the energy consumption of the entire page load with a mean error of
6.3% and that of individual page load activity segments with a mean error of 16.4%. When trained as a neural
network, RECON’s mean error for page energy estimation reduces to 5.4% and the mean segment error is 16.5%.
We show that RECON can accurately estimate the energy consumption of a Web page under di�erent network
conditions, such as lower bandwidth or higher RTT, even when the model is trained under a default network
condition. RECON also accurately estimates the energy consumption of a Web page after applying popular Web
enhancements [9] including ad blocking, inlining, compression, and caching.
The key application of RECON is to analyze how and why Web page enhancements a�ect energy consump-

tion. To this end, we look at four case studies where a Web enhancement exhibits non-intuitive results. The
enhancements (and the non-intuitive behaviors) studied are: (i) An Ad blocker [4] that signi�cantly hurts energy
even though the page load time is not signi�cantly a�ected, (ii) Caching that improves energy disproportionately
compared to page load time, (iii) A more powerful compression optimization providing worse performance
than a less powerful one, and (iv) Inlining optimization that helps performance and energy under one network
condition, but hurts them under another network condition. In each of these cases, RECON breaks down the
energy consumption into its constituents, and provides useful insights into the energy behavior that are not
possible using power meters or resource-based power models.

2 BACKGROUND, MOTIVATION, & SCOPE
2.1 Page Load Process
The page load process starts with the user issuing a URL. As a �rst step, the browser downloads the html �le
corresponding to the URL. When the �rst part of the html �le is received, html parsing begins; parsing is a
computationally intensive process. When the parser encounters a tag for an image, JavaScript (js), or Cascading
Style Sheets (css), it downloads the object, which is a networking process. If the object is a js or a css, then these
are further evaluated, again a compute process. Progressively, the rendering engine renders the page on the
browser. In e�ect, the page load process is a series of network and compute processes; we call each of these
processes as components.
In RECON, we leverage a tool called WProf-M to obtain the component-level information. WProf-M [31] is

an in-browser pro�ler that, among other things, decomposes the mobile page load process into its constituent
components. We use the WProf-M tool to get detailed timing information about the start and the end of each
component.

While we use WProf-M, other tools that provide component-level information, such as the Scout tool [32] or a
combination of chrome://tracing and Chrome developer tools [11], can also be used in RECON.

2.2 Energy versus Performance
The components of the page load process together form a dependency graph [39]; many of the components can
execute in parallel, while some components are serialized. Figure 1 shows the components for an example page,
with certain components occurring in parallel. WProf-M provides enough information to visualize any Web
page load similar to the visualization in Figure 1. Naturally, when components occur in parallel, external power
monitors can not isolate the power consumption of each component.

It is important to note that energy and performance are fundamentally di�erent metrics. Performance, usually
measured using the Page Load Time (PLT) metric, is the length of the critical path on the dependency graph [39];
the critical path in Figure 1 is shown using a red dotted line. The power and energy consumption, of course,
depend on all the components that make up the page load process, not just those on the critical path. In Figure 1,
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Fig. 1. An example page load process decomposed into various components such as HTML parsing, JavaScript, etc.

the energy consumption includes components on the critical path as well as those o� the critical path, such as
img1 and img2.

One implication of this di�erence is that energy consumption may not always correlate with PLT. For instance,
an optimization may signi�cantly shorten the critical path (and thus the PLT) in Figure 1, but its e�ect on energy
may be much less signi�cant if it increases the loading time of images, especially if image loading turns out to be
a power-hungry process. In some rare cases, optimizations that help PLT may even hurt energy consumption. In
§7, we show examples of real Web pages, where the PLT and energy consumption are poorly correlated when a
given optimization or enhancement is applied.

2.3 RECON Usage Model
The energy consumption of a Web page load varies across di�erent runs since Web page loads experience high
variance [40]. This means that predicting the energy consumption of a Web page is di�cult and prone to errors.
Instead, RECON estimates the energy consumption for an instantiation of a Web page load; that is, the energy
consumption for a single run or load of the Web page.
Today, the energy consumption of a Web page is measured using external power monitors. While external

power monitors, such as Monsoon [7], are accurate, they are not easy to work with. The monitors are connected
to the phone using battery bypass technology that requires connecting the phone’s battery leads directly to the
external monitor and performing experiments in this tethered setting. Figure 3 illustrates such a setting for our
experimental setup.
The user of the RECON system can accurately estimate the power consumption of several Web page loads

without signi�cant human e�ort. The user �rst learns the power models by training over a set of Web page loads,
that we call the training set, using a power monitor. The only requirement is that the Web pages in the training
set should contain at least one instance of all components that make up the target page load. The learnt power
model is a function of the Web page components and resource consumption, which can be obtained at run time
as the Web page loads. Then, the user simply loads the target Web page and obtains the component and resource
consumption information (§4.2). RECON then estimates the power and energy consumption of that Web page
instantiation using the model without requiring the power monitor.
The estimation process is completely automated: the Web page loading and the component and resource

information gathering is done programmatically. Similar to prior modeling work [33, 43], RECON builds predictive
models for the user-speci�c network types (WiFi vs Cellular) and devices.
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2.4 RECON Users
The RECON user could be the content provider, the Web designer, or the browser vendor, who wishes to quickly
and accurately determine the energy consumption of Web pages. For instance, a Web designer can use RECON to
design energy-e�cient Web pages by continually estimating the energy consumption as she is designing the
page. Since the process is automated, measuring the energy consumption of the Web page requires no e�ort from
the designer.
RECON estimates the energy consumption of Web page loads after an optimization or page enhancement

and can thus help study pathological cases where energy increases in response to page enhancements. For
instance, we �nd that certain Ad block extensions that remove ads from the Web page signi�cantly increase
energy consumption (§7.2). RECON can identify these cases and help understand why the energy increases. This
capability can be invaluable for Web developers who wish to design useful Web optimizations.

In some cases, phone vendors can train the power model and publish the RECON coe�cients for their speci�c
device. In this case, the RECON user does not even have to learn the RECON model, and can simply use the
published model to estimate energy consumption on the speci�c device. In the future, we envision RECON also
helping end-users and others assess the energy impact in-the-wild. This in-the-wild usage scenario requires
models that work across various devices and network types. We hope to address this challenge as part of future
work to extend the bene�ts of RECON.

3 RECON
The key idea in our modeling approach is to exploit page-speci�c component-level information and integrate
it with coarse-grained resource logging; hence the term RECON (resource- and component-based modeling).
Because RECON leverages component-level information, it does not require �ne-grained resource logging needed
to model the power consumption of the short-lived page load process. The component-level information also
allows imparts explanatory power to RECON for deconstructing the impact of a page enhancement on energy
(see §7).

3.1 The Design of RECON
At a high-level, RECON works by developing a parameterized page-independent power model that incorporates
the component- and resource-level information to make accurate estimations. We train the model by loading a
few Web pages and monitoring the power consumption using a power meter. Once trained, we use the model to
estimate the power consumption of any Web page, loaded as-is or under any enhancement, without the power
meter.

3.2 RECON Modeling Overview
Building an accurate energy model using components and resource information is challenging. The monitored
power consumption is a result of several simultaneously executing components and their aggregate resource demand.
At any given time slice, the number of components of the page load process can be di�erent. Given a new Web
page load with an arbitrary distribution of components and aggregate resource utilizations, how can we estimate
its power and/or energy consumption?
Our modeling approach is to break down the page load process into “segments”, where a segment is de�ned

as an interval of page load activity during which the components of the Web page do not change. Figure 2
shows the component-level decomposition for the instagram.com page, via WProf-M, juxtaposed with its power
consumption obtained via the power monitor. Segments of the instagram.com page are illustrated in Figure 2
via dashed blue lines. By de�nition, a segment is composed of at least one component. Further, the entire page
load process can be partitioned into discrete (non-overlapping) segments, as shown in Figure 2.
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Fig. 2. (a) Using WProf-M to decompose the components when loading the instagram.comWeb page. (b) The instantaneous
aggregate power draw recorded as the Web page loads. Segments are shown in dashed lines.

Component and resource information: For component-level information, we leverage WProf-M [31] to
obtain three pieces of information: (i) the set of all components, including their type and how often they appear,
that make up the segment, (ii) the start time of each component, and (iii) the end time of each component. The
speci�c component types we leverage for RECON are discussed in §4.2.

For resource-level information, we log several resource utilization values for the device; the set of resources we
monitor and the frequency of monitoring is discussed in §4.2. We average the resource usage over the segment
length.

Modeling goal: Given a segmented page load process, our goal is to decompose the monitored power consumption
of a segment to its constituent components and resource utilizations during that segment.

To this end, we model the power consumption of a segment, s , as a function:

P̂s = f

 
Ri

i 2Resources
,Cs

!
, (1)

where i represents the various resources we monitor, such as CPU utilization, and Ri represents the average
utilization for that resource during s; Cs represents the set of components that make up segment s . If we can
determine an appropriate function, f , as in Eq. (1), then we can estimate the power consumption of any segment
given the distribution of its components and resource utilizations.
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Modeling techniques: We investigate two machine learning techniques to build our power model, f , in Eq. (1):
(i) Linear Regression (LR, §3.3), and (ii) Neural Networks (NN, §3.4). These represent two very di�erent learning
techniques that model the dependent variable (segment-level power consumption, in our case) in terms of the
independent input variables (component- and resource-level information). LR is a statistical technique that
models the dependent variable as a simple linear weighted combination of the independent variables. NN is a
learning algorithm that learns how to best combine the independent variables, possibly in a non-linear manner,
using adaptive weights, to estimate the dependent variable. While LR is easy-to-use and quick to train, it cannot
model non-linearities and dependencies between independent variables. NN, on the other hand, can model
non-linearities and dependencies, but is more complex and slow to train.

3.3 Linear Regression-Based Power Model
The key idea behind the LR model is to consider the per-component and per-resource power contributions as
invariants, and model the device power consumption as a linear combination of these variables. That is, we
assume that the power consumption of a given component, such as css, is constant, regardless of the Web page it
appears in. Likewise, we assume that the power consumption for each unit of a given type of resource, such as
CPU utilization, is constant. Lastly, we assume that the power consumption does not change during the length
of a segment. In our experiments, we �nd that 90% of all segments have lengths below 94ms, a relatively short
duration. Further, as we discuss in §4.2, our resource sampling interval is 100ms. Thus, we believe that our
assumption about power being relatively constant during the segment length does not adversely a�ect our results
since we only get one resource sample per segment in most cases. For longer segments, we average the resource
utilization samples collected during the segment length. Of course, we can also impose an upper limit on segment
length and split longer segments into multiple, shorter segments, each with its own constant power draw.

Mathematically, we model the power consumption of a segment, s , at any time as:

P̂s = � +
X

i 2Resources
�iRi +

X

j 2Cs
�jFj , (2)

where Ri represents the average utilization for resource i during s; j represents a component type, and thus
j 2 Cs is the set of all component types that make up segment s; Fj is the frequency of component type j,
meaning the number of type-j components in the segment; �nally, �i and �j are coe�cients (independent of s)
representing the power contribution of the resources and components, respectively, and are variables that need
to be determined. � represents the baseline power draw of the phone, and accounts for background activities,
screen brightness, etc. Given this model, our goal now is to estimate the coe�cients, ~w = (� , ~�,~� ).

Note that a component’s power consumption pro�le will not always be the same. While we model the power
contribution of a component of type j using a constant, �j , we also capture the possibly changing resource usage
during the component’s execution, which can account for its inconsistent power pro�le. In other words, we
capture the variation between di�erent instances of the same component by also considering their possibly
di�erent resource utilizations. The resource-level information thus complements the component-level information
under RECON.

We use multiple linear regression to derive the weights, ~w , that are indicative of the power contribution of each
component and resource. We obtain the components of a segment via Wprof-M and represent their contribution
to power using indicator variables; summing up all contributions/occurences of a component type in a segment
gives us its frequency, which we use in Eq. (2). Our use of a linear power model is motivated by the following
observations: (i) for resources, prior work has shown that resource usage, such as CPU and network utilization,
a�ect power consumption linearly to some extent [26, 41–43], and (ii) each Web component has its own modeled
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power draw (represented by �j in Eq. (2)), so we linearly sum all component power contributions. Note that
Eq. (2) implicitly assumes that the individual power contributions of resources and components are independent,
and thus can be added together. While this is not necessarily true, we �nd that, in practice, the model represented
by Eq. (2) accurately tracks total power consumption.

3.4 Neural Network-Based Power Model
We employ NN, more speci�cally, a multi-layer feed-forward network with a sigmoid activation function in the
hidden layer, to model segment power consumption. NN o�ers a number of advantages, including the ability
to implicitly detect complex non-linear relationships between dependent and independent variables [38]. A
disadvantage is that NN is prone to over-�tting [24]. For more details, we refer the readers to Haykin [27].

NN takes the component- and resource-level information detailed in §3.2 as input nodes, and then learns how
to best combine them, using adaptive weights, to estimate the segment power consumption that is close to the
observed power. Note that these are the exact same inputs as we use for LR in Eq. (2), namely, utilization Ri for
each resource i , and frequency Fj for each component type j. We use a single hidden layer in our network since
the Universal Approximation Theorem is well known for feed-forward networks with sigmoid functions [27].

Mathematically, the NN model for power consumption of a segment, s , is:

P̂s = �0 +

mX

k=1
�k

*.
,
1 + exp(�(xk +

X

i 2Res
�k,iRi +

X

j 2Cs
�k, jFj ))

+/
-
�1

, (3)

where i , Ri , j and Fj are the same as in Eq. (2).m is the number of nodes in the hidden layer of the NN; we
setm to be the average of the number of input and output nodes, as is commonly suggested for NN [28]. The ~x
and ~� vectors, and the � and � matrices, are weights (independent of s) that need to be learned. Note that the
number of weights to be learned for NN is at least a factor (ofm) higher than that for LR. Also note that while the
exponent for NN in Eq. (3) appears to be similar to the expression in the LR model, the weights can be di�erent,
and further, there arem di�erent exponents in NN. We use the Truncated Newton algorithm [30] to derive the
weight vectors and matrices that minimize the estimation error for the NN model in Eq. (3).

3.5 Model Training and Testing
We now discuss our methodology for model training and testing, which is common for both the LR and NNmodels.

Training:We train our model on one set of Web pages and test on a di�erent set of Web pages. In the training
period, we randomly choose a subset of Web pages and train on multiple instantiations (or runs) of those selected
Web pages. We then leverage the trained model to estimate the energy consumption of the remaining Web pages,
once again for several instantiations.

For each run, RECON records the power consumption values, page load component information, and resource
utilizations. We use the instantaneous power measurements to calculate the average power, P̂ , for each segment.
We then use regression for LL and the Newton algorithm for NN over the segments collected during the training
runs to derive coe�cients/weights for the models.
Note that our models can be trained online without having to build detailed subsystem-level models as in prior

work. For example, recent work [23] developed a CPU speci�c power model by running microbenchmarks at each
possible frequency for each combination of CPU cores to train their model. Similar training experiments were
carried out for other subsystems. For our LR and NN models, we can obtain all component- and resource-level
coe�cients and weights simultaneously by simply training over a set of Web page loads; we do not have to
perform separate, controlled training experiments for each component or resource. Of course, our focus here is
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only on modeling the energy consumption for the browser, which allows for faster training.

Testing: The coe�cients/weights, derived via training, for our power models in Eqs. (2) and (3) can now be used
to estimate the power and energy consumption of any new instantiation of any Web page without requiring
the power monitor. The inputs are the set of components involved in the page load process and the resource
consumptions for the new instantiation, all of which can be obtained at run time (see §4.2). We apply our trained
model on the test data by substituting the learned weights, ~w in Eq. (2) for LR, and vectors ~x and ~� and matrices �
and � in Eq. (3) for NN, along with the above-mentioned inputs. This gives us the estimated power consumption
for every segment; we then estimate the energy consumption by multiplying the estimated power with the
observed segment length (obtained via Wprof-M). Summing up the energy consumption across all segments of
the instantiated page gives us the estimated energy consumption of the new Web page load.

4 EXPERIMENTAL SETUP
We now discuss our experimental setup which we use for training, testing, and evaluation of RECON. Results for
RECON validation and evaluation are presented in the subsequent sections (§5 and §6).

4.1 Devices and Network
Our experiments are conducted using three phones: (i) Samsung Galaxy S4 (Android 4.3, Jelly Bean), (ii) Samsung
Galaxy S5 (Android 5.1.1, Lollipop), and (iii) Galaxy Nexus (Android 5.1.1, Lollipop). Unless otherwise speci�ed,
we present results from the Galaxy S4.

We experiment under several network conditions, includingWiFi with di�erent tra�c conditions, and a cellular
(4G) network. Unless speci�ed otherwise, we use the default WiFi network with 30 Mbps download and 20 Mbps
upload bandwidth, and a 50ms RTT to a reference server hosted by pair Networks.

4.2 Power, Component, and Resource Logging
RECON logs the power, Web page components, and coarse-grained resources during the page load for modeling.
We now describe each of these in turn.

Logging power consumption: To measure the device power consumption, RECON uses an external power
monitor, Monsoon [7], which performs �ne-grained power measurement at a 5KHz frequency. RECON uses the
power monitor only to train the models and not for estimations.
Figure 3 shows our experimental setup with the Samsung Galaxy S4 device loading a sample mobile Web

page, fico.com, while recording the instantaneous current draw and maintaining a constant voltage through the
Monsoon power monitor.

Logging Web page components: We leverage WProf-M (described in §2) to log the components of the Web
page load. WProf-M instruments the Android Chromium browser, Version 31.0.1626.0. We run all our experiments
on the instrumented mobile browser. The instrumentation logs provide �ne-grained timing information to
decompose the page load process into various components (an example decomposition is shown in Figure 2(a)).
Since our focus is on Web page energy consumption, we classify components according to their expected

energy behavior. Speci�cally, we group all components into: (i) downloads (all types, including text and images),
(ii) js evaluation, (iii) css evaluation, and (iv) html evaluation; we group all downloads together since the energy
consumption for a download should only depend on the object size, and not the object type. RECON can be easily
extended to also consider the type of download, or even the type of image being downloaded, since the modeling
is independent of the choice of component classi�cation.
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Fig. 3. Our hardware setup showing the Samsung S4 under test connected to the Monsoon power monitor.

Logging resource usage: RECON combines component-level modeling with coarse-grained resource monitoring.
To monitor resources, we use a simple android service that records resource consumption values. Based on
our prior work [31], we �nd that CPU and network are important power contributors for mobile browsers. For
CPU, we collect per-core CPU utilization from /proc/stat and per-core CPU frequency from /sys/devices.
The device CPU power consumption is known to depend on the {utilization, frequency} pair [23, 44]; we use
the product of utilization and frequency to account for this non-linear dependence. For network, we collect
number of bytes transmitted and received during an interval from /proc/net/dev. Although the screen power
consumption is critical to Web page loads, Chen et al. [23] show that screen power remains fairly constant when
displaying at a �xed brightness. Accordingly, we set the screen brightness to a constant and model the baseline
power consumption of the device instead; in the future, we will study the impact of newer OLED displays, whose
energy consumption changes with the content on the screen. We �nd that monitoring memory usage does
not improve the estimation accuracy of RECON; we thus omit it from our logging. For our setup, we disable
other functionalities such as GPS and audio, and do not consider them in our power model. The p-value for the
14 resource variables (12 for CPU and 2 for network) we consider are small, thus validating our selection (see §5.4).

Logging methodology:
Both WProf-M and resource monitoring use logcat, Android’s logging software, to record raw data that is

then analyzed o�ine. To maintain low monitoring overhead, we log resources every 0.1 seconds, resulting in a
less than 2% increase in CPU utilization. When we increase the resource monitoring frequency to once every
0.01 seconds, the CPU utilization increases by more than 30%, which is clearly infeasible. WProf-M and resource
logging together add only about 0.2W to the total power consumption. Compared to the average device power
consumption when loading a Web page without WProf-M or resource logging, this 0.2W accounts for less than
5% of the total power consumption.
An important step in our methodology is to synchronize the power monitor measurements with the Web

page load times. Our testing framework is completely automated using the calabash [10] scripting language that
starts the power monitor and then loads the Web page programmatically. We let the power monitor run for a few
seconds to stabilize, and then load the Web page. The start of the Web page load creates a spike in current, that
can be identi�ed in the power monitor’s logs. We mark this time as the start of the Web page loading process.
We note that this synchronization may not be accurate at a microsecond scale, but given that the page load
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Fig. 4. Average energy consumption (measured) across all runs for all 80 Web pages, sorted in ascending order.

times are on the order of several hundreds of milliseconds, this level of synchronization su�ces for our purposes.
We determine the end of the page load using WProf-M logs; the page load ends when the DOMLoad event is
�red [31]. These two events together allow us to identify portions of the power logs that correspond to the start
and end time of the Web page load.

4.3 Web Pages
We experiment with 80 Web pages. 60 Web pages are randomly selected from top 100 Alexa Web Pages [18]
across 10 di�erent countries. The remaining 20 Web pages are randomly selected from pages ranked between 100
to 10,000 on the Alexa site for diversity in page selection. We load each Web page 10 times in our experiments.
The Web pages vary signi�cantly in terms of their PLT and power/energy consumption. Figure 4 shows the

measured energy consumption for each of the 80 Web pages, averaged across their 10 runs, sorted in ascending
order.

Since Web pages change over time, we download the main html page locally on our server, and load the page
from this local copy. Note that all the objects embedded in the page are still fetched from the original remote
server over the network. Downloading the main html locally ensures that roughly the same set of objects are
loaded in each run, though the object loads may vary because of dynamic JavaScript. Despite loading the Web
pages locally, our experiments still show signi�cant variance across runs, as we show for example Web pages in
Figure 9.

Unless speci�ed otherwise, all Web page loads are cold loads and the cache is cleared after each load. We show
in §6.4 that the accuracy of our modeling remains high irrespective or whether we employ caching or not.

5 RECON MODEL VALIDATION
We now thoroughly validate our LR and NN models and contrast the results. We start by presenting the Web
page-level error in §5.1 and §5.2, followed by the segment-level error in §5.3. We then contrast LR and NN in §5.4
and �nalize our power model for RECON.

5.1 Modeling Error for Web Page Energy
We employ RECON to estimate the energy consumption of 80 Web pages (as discussed in §4.3) using LR and NN
models, and compare the model-estimated values with actual measurements from the Monsoon power meter.
The 4-fold cross-validation error averaged across all instantiations of these Web pages is 6.29% under LR and
5.40% under NN. For cross-validation, we split the list of 80 Web pages into 4 sets of 20 pages each, and then train
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Fig. 5. RECON validation: Percentage error in energy estimation for LR and NN models across the 80 Web pages, sorted by
the error. The mean error is obtained by averaging across 10 instantiations of each Web page under 4 runs of cross-validation.
While this figure shows the average, Figure 6 shows the complete CDF of the errors.
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Fig. 6. RECON error CDF: The CDF shows the LR and NN energy estimation errors across all runs of all Web pages (800
data points). 83% of the LR errors and 86% of the NN errors are below 10%.

the models on 3 of these sets. Note that each Web page is loaded 10 times, so the training set consists of 600 page
loads and the test set consists of 200 page loads. We then estimate the energy consumption of the 200 page loads
in the test set, and compute the test error for each of the 20 Web pages by averaging over its 10 instantiations. We
repeat this training/testing over all 4 combinations of the sets and report the average test error across all 4 test
sets spanning all 80 Web pages.
Figure 5 shows the (sorted) estimation error for all Web pages under LR and NN models. The low estimation

error is obtained by computing the page-independent model coe�cients and weights for Eq. (2) and Eq. (3). If
we instead train a separate model for each Web page by training over several runs of the same Web page to
derive the weights, the error further reduces by about 1%. However, this severely limits the applicability of such
page-dependent models in practice. Thus, RECON employs practical page-independent modeling which provides
su�ciently high accuracy.
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Fig. 7. Average modeling segment error (sorted) for LR and NN estimated segment energy consumption for all pages.

5.2 CDF of Web Page Energy Modeling Error
Figure 6 shows the energy estimation error for all 10 runs of all 80 Web pages under LR and NN. We see that
more than 80% of the errors for both LR and NN are below 10%, and more than 90% of the errors are below 20%.
This shows that the error for almost all Web page loads (not just the average) is low.

5.3 Modeling Error for Segment Energy
RECON can also be used to estimate �ne-grained segment-level energy consumption directly using Eq. (2) for LR
and Eq. (3) for NN. This is a valuable feature that allows us to analyze the impact of Web optimizations on the
energy consumption of individual components of a page; we highlight this advantage later in §7. The average
segment-level modeling error, referred to as seg_error (to distinguish from full page estimation error), across
all 80 Web pages is 16.40% under LR and 16.52% under NN. The full Web page estimation error is lower than
seg_error as the over-estimation of energy for some segments is countered by the under-estimation of energy for
other segments when computing full page energy.

Figure 7 shows the sorted energy estimation seg_error for the 80 Web pages under LR and NN; the order of the
Web pages here is di�erent from that in Figure 5.

Figure 8 shows the actual and estimated segment-level power for speci�c instantiations of two Web pages
using the LR model. We see that the estimated values closely track the measured values; results are similar for
the NN model.
To investigate the modeling error further, we consider page loads that have a high modeling error (such as

those in the tail of Figure 6), and then focus on all segments in these page loads with seg_error > 50%. We �nd that
downloads and html evaluation are among the most frequently occurring objects in these segments. Furthermore,
downloads and html evaluation components have long (cumulative) lengths in most of these page loads, hence
contributing signi�cantly to the page load energy. Based on the above observations, we conclude that much of
the modeling error can be attributed to the object downloads and html evaluation components. Note that it is not
possible to evaluate the per-component modeling error since we cannot directly measure the actual power draw
of each component; we can only measure the aggregate power consumption of the device.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 5. Publication date: June 2017.



5:14 • Y. Cao et al.

0 20 40 60 80
Segments 

2

3

4

5
P

o
w

e
r 

(W
a

tt
s)

Actual
Estimated
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(b) Segment-level modeling for sfr.fr. Error=9.7%.

Fig. 8. Actual versus LR-estimated segment-level power consumptions for specific Web page instantiations.

5.4 Why We Pick LR over NN for RECON
The LR model is motivated by its ease-of-use and the fact that LR is fast to train. In fact, we train our LR model
online in a few seconds; each of our four folds of training takes about 2 seconds. The possible disadvantage of LR
is that the model is simplistic, and may result in poor accuracy.
The NN model is motivated by the fact that it can model non-linearities in the input variables (component-

and resource-level information) and any dependencies that might exist between them, thus providing higher
accuracy. The disadvantage of NN is that the model training is time consuming, about 20 mins for a single fold
of our NN training, and requires expert knowledge to determine the model parameters such as the number of
intermediate nodes and layers.
The 4-fold cross-validation error for estimating the Web page energy consumption is 6.29% for LR and 5.40%

for NN, as shown in Figure 5. Clearly, both models have high accuracy, and LR has only marginally higher (by
0.89%) test error. Given the simplicity and fast training time for LR, we are inclined to employ LR in our modeling.

But most importantly, LR allows us to easily deconstruct the individual power contributions of each component
and resource, which is the main motivation for the design of RECON. Based on Eq. (2) for LR, the power
contribution of component j is �j , and that of resource i is �i per unit of utilization. Using R [35], we �nd that the
p-values of all components and resources in the LR model are less than 10�9. The low p-values indicate that the
speci�c component and resource variables we choose in the LR model (see §4.2) are statistically signi�cant.

While NN modeling also provides weights for all nodes, it is not obvious what these values represent since they
could be weights for non-linear combinations of components and resources, making it hard to deconstruct the
individual power contributions of each component or resource. For example, collecting all weights for any Ri or
Fj in Eq. (3) is clearly non-trivial given the several exponent functions that appear in a summation of non-linear
terms.

For these reasons, we choose the LR model for RECON in the rest of this paper.

6 RECON EVALUATION
In this section we provide further evaluation of RECON using our LR model. In particular, we evaluate RECON for
di�erent devices (§6.1), under di�erent network conditions (§6.2), and in the presence of page load variance (§6.3)
and Web enhancements (§6.4). Finally, we compare RECON, quantitatively and qualitatively, with resource-only
and component-only modeling in §6.5.
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Fig. 9. Error across runs of the same page. Despite the variance in energy, RECON accurately estimates the energy
consumption for each run for the above example Web pages. Numbers above the bars denote the error for each run.

6.1 Evaluating RECON for Di�erent Devices
RECON’s online modeling approach is not speci�c to the S4 device we use and can be extended to other devices
as well. We use our modeling approach to train and estimate the energy consumption of ten Web pages on the
Galaxy S5 and Galaxy Nexus devices (see §4.1). We obtain a low full page mean modeling error of 6.9% and
seg_error of 19.7% for the S5, and modeling error of 9.6% and seg_error of 16.9% for the Nexus. Note that the
model has to be retrained for each device because of the signi�cant di�erences in the architecture and features
between them; the need for device-speci�c models was also emphasized in prior work [33, 43]. However, we
emphasize that, within the scope of our evaluation, our model is page-independent, as illustrated by the results
in §5.1 and §5.2.

6.2 Evaluating RECON for Di�erent Networks
Thus far our experimental results employed the default WiFi network described in §4.1. It is interesting to
ask whether the power model trained on this default network can be used to accurately estimate the energy
consumption on a di�erent network. Speci�cally, can the weights derived in Eq. (2) via training on one network
provide accurate estimates for energy consumption on another network? We use the above-derived model, trained on
the default network, to estimate energy consumption of ten di�erent Web pages under three di�erent networks.
Lower bandwidth: We use Linux’s tra�c control (tc) to lower the upload and download bandwidth to 5 Mbps;
this increases the average PLT by about 10%. Our average energy estimation error across ten di�erent Web pages
is 7.3% and the seg_error is 13.3%.
Higher RTT: We use tc to increase the RTT (150ms to the reference server) while keeping the default network
bandwidth; this increases average PLT by about 50%. Our average estimation error across ten di�erent Web pages
is 8.8% and the seg_error is 16.4%.
Cellular network:We also experiment with a 4G LTE cellular network (AT&T) instead of WiFi. The cellular
network has 10 Mbps download and 2 Mbps upload bandwidth, and 70ms RTT to the reference server. We
train our model on the cellular network and then test on ten di�erent Web pages also on the cellular network.
The modeling error is 6.1% and the seg_error is 14.4%. Since the behavior and dynamics of the network are
interface-speci�c, even for the same device, RECON results in high modeling error when trained on, for example,
the WiFi environment and tested on the cellular environment (21.2% modeling error). As a result, the model has
to be retrained for each network type.
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Enhancement Caching Compression Inlining Ad block
Error 8.9% 8.4% 5.4% 8.5%

Table 1. RECON modeling error for di�erent enhancements.

6.3 RECON under Page Load Variance
There is signi�cant variance between loads of the same Web page. It is thus interesting to ask whether RECON
can accurately estimate the energy consumption for each instantiation of a Web page. While Figure 6 shows the
CDF across all instantiations of all Web pages, Figure 9 shows the actual and estimated energy consumption for
all instantiations of 3 speci�c Web pages, newegg.com, stackoverflow.com and whatsapp.com. We see that the
error for every instantiation is less than 7%. The energy consumption across di�erent runs varies by as much as
44%. RECON’s estimated energy consumption is in agreement with the actual energy consumption across all
instantiations, despite the variance.

6.4 RECON under Page Enhancements
RECON can also be used to estimate Web page energy consumption under Web enhancements, including com-
pression, inlining, ad blockers, and caching (that is, without cold loads). Table 1 shows the RECONmodeling error
for di�erent enhancements; we explain these enhancements in detail, including their setup and implementation,
in §7.

6.5 Comparison with Resource-only Modeling
RECON leverages both resource-level information and component-level information when modeling Web page
and segment-level energy consumption. Instead, one could leverage only resources, as in prior work (e.g.,
PowerTutor [43], V-edge [41], and WattsOn [29]), to construct similar models. However, such models do not
perform as well as RECON.

When we model power consumption using only resource-level information, the modeling accuracy is limited by
the resource monitoring frequency which needs to be low (10/second, in our case) to ensure low CPU and power
overhead (see §4.2). For example, using resource-only modeling increases the error by about 34% for bing.com
and about 41% for craigslist.org when compared to RECON. This result was obtained using the exact same 14
resource metrics used for RECON, collected at the same frequency (once every 0.1s), and using the LR model.
Although related works suggest logging resources every few seconds [23], we �nd that lowering the resource
monitoring frequency to 2 - 5 seconds increases average modeling error across all page loads by 38%. In the
context of this work, resource-only models can not provide visibility into the power consumption of individual
page load activities. RECON, on the other hand, can provide such visibility, thus enabling the analyses of Web
optimizations as presented in §7.
However, resource-level information is important and cannot be completely dismissed. In particular, models

that only rely on component-level information perform poorly as they cannot distinguish between the resource
utilization levels for various phases of a component load. For example, an image load might involve fetching
the image from the server and possibly rendering it locally. These di�erent phases are treated equally under
WProf-M, and can result in poor accuracy for such components when not leveraging resource information.
Figure 10 illustrates such an example for a long image/gif component encountered as the sole component of a
segment during the loading of fico.com. As shown, the power and resource usage vary considerably during the
loading of this segment; component-only models cannot capture this information and often have poor accuracy.
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Fig. 10. The figure depicts the variations in power consumption (top) and resource usage (bo�om) for a segment of fico.com
where only one long component (image/gif download) was present.

Using the same examples as for resource-only modeling above, component-only modeling increases the modeling
error by about 12% for bing.com and about 59% for craigslist.org, when compared to RECON.

6.6 Comparison with PLT-only Modeling
We now compare RECON with a simple power model that only relies on PLT. In particular, we consider a linear
regression model which uses PLT as the only explanatory variable:

Êpa�e = c0 + c1 · PLT , (4)

where Êpa�e is the estimated energy consumption of the page load and c0 and c1 are coe�cients to be deterimined
(via regression). We test this model on the full set of page loads, and �nd that the PLT-only model given by Eq. (4)
has a 66% higher 4-fold cross-validation error than RECON. This simple result highlights the need to incorporate
information about components and resources into the model to account for variations in power throughout the
page load.

7 CASE STUDIES ENABLED BY RECON
A key application of RECON is in providing visibility into both how and why Web page enhancements a�ect
energy consumption. We show four case studies that exemplify RECON’s explanatory power. In each of the four
cases, we �nd that an enhanced Web page results in non-intuitive energy behavior, and use RECON’s constituent
(component- and resource-level) analysis to analyze this behavior. The enhancements (and the non-intuitive
behavior) studied are: (i) An Ad blocker [4] that signi�cantly hurts energy even though the PLT is not signi�-
cantly a�ected, (ii) Caching that improves energy disproportionately compared to PLT, (iii) A more powerful
compression optimization providing worse performance than a less powerful one, and (iv) Inlining optimization
that helps PLT and energy under one network condition, but hurts PLT and energy under another network
condition.
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Fig. 11. Normalized power contribution estimations for components and resources based on our LR modeling.

Experimental setup: For each case study, we load 10 Web pages with and without the enhancement, and
measure the PLT and energy consumption over multiple runs. The Web pages were chosen from Alexa’s top
million list to re�ect a broad range of page sizes; for Ad blocker, we also consider sites that are known to contain
ads so as to trigger the ad blocking. We note that, extensively studying each of these Web enhancements is
outside the scope of this work. Our goal is to use RECON to explain certain non-trivial behaviors observed in
our case study, thus highlighting the advantages of our main contribution, RECON. As shown in §6.4, our mean
estimation error for the four enhancements using this setup is less than 10%.

To enable the enhancements, we serve these Web pages from our local Web server by downloading all contents
from the remote servers; note that many of the Web enhancements are applied at the Web server requiring that
we have control over the Web server. To maintain the links, we launch a separate virtual DNS and Web server for
all domains involved.

7.1 Breaking Down Energy Consumption into its Constituents Using RECON
We use RECON to analyze any non-intuitive behavior that we observe in our case studies. Speci�cally, RECON
breaks down the estimated Web page energy consumption into the energy consumed by Web components and
resources, both before and after the enhancement is applied. As discussed in §4.2, we classify components as
object downloads, and evaluation of js, css, and html; for resources, we focus on CPU and network related metrics.
Recall, from §3.3, that the coe�cients (~w) in the LR model (Eq. (2)) correspond to the relative contribution of

each component and resource to total power consumption. Multiplying the coe�cients with the component
and resource lengths gives us their energy contribution — the energy spent in downloading objects, the energy
spent is evaluating js, css, and html, and the energy consumed by the device due to CPU and network activities
unrelated to the components. This provides the needed visibility into the energy e�ects of the page enhancement;
such visibility is not possible by relying solely on power meters that only report aggregate power consumption at
any time, or resource-based power models that can not deconstruct the power into constituent Web component
contributions.
To illustrate this visibility, consider Figure 11, which shows our model-estimated power contributions for

components and resources. For ease of presentation, we normalize the contributions such that they lie in the
[0, 1] range, with the smallest contribution, eval css, set to 0. The components from left to right are evaluation of
js, css, and html, and downloads; these are followed by resource variables which represent the power consumed
by the CPU per unit of utilization, per unit of GHz, and per unit of (utilization · GHz), and the power consumed
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by the network transfer activities. Of course, these are only power contributions. We must also consider the
component and resource lengths for each segment or page to obtain their energy contributions.

7.2 Case Study #1: Ad Blocker
One popular technique to block unwanted advertisements and malware is to block them at the name resolution
phase. This technique, also called the hosts �le ad blocking, maintains a blacklist of malware and ad domains.
Before the browser loads an object, it checks this blacklist. If the object domain is blacklisted, it will be resolved
to an IP address (e.g., 127.0.0.1) with no service. We use a popular hosts �le ad blocker called BSDgeek_Jake in
our case study [36].
For two Web pages that were known to have malware, the ad blocker signi�cantly reduced both PLT and

energy. This is not surprising, since the ad blocker saves time and energy by blocking blacklisted objects that will
then not be loaded.

However, for the remaining 8 Web pages (that did not have any blacklisted objects embedded in them), loading
the Web page with the ad blocker increased energy by 50%. Surprisingly, the PLT did not increase correspondingly,
and on an average, the PLT increase was only 13%. This non-correlation between PLT and energy is problematic
for a Web developer or even the user. The BSDgeek_Jake is popular since the blocker either improves PLT or
leaves PLT una�ected; but its negative e�ect on energy needs to be understood to make informed decisions about
its use.

Performing the energy break down of all 10 Web pages, we �nd that when using ad blocker, the CPU resource
energy increases by an average of 200%. Recall (§7.1) that the CPU resource energy is the energy consumed by the
CPU, not by the components. In fact, using RECON, we �nd that the other constituents that make up the total
energy, including the Web components and network usage, see little change with and without the ad blocker for
the 8 Web pages that have no blacklisted objects.

This indicates that it is not the Web page components, but other external compute activities, that are causing
this energy increase. This external computation activity likely involves scanning the entire blacklist �le before
loading each object. The BSDgeek_Jake has more than 150K entries for ads/malware domain, and matching
each domain against this list is known to be power hungry [36]. We note that while a power monitor can detect
this increase in energy, it cannot explain why the energy increases. Similarly, resource-based power models can
identify that the CPU energy is high, but cannot identify if the energy is high due to Web page load activities or
other external factors.

7.3 Case Study #2: E�ect of Caching
Caching objects locally at the client saves a round trip time during the Web page load process, improving
performance. For our experiments, we load the page once and cache all the �rst-level embedded objects: css, js,
and images. Other dynamic objects such as ads are still fetched from the server. The e�ect of caching is studied
by reloading the Web page immediately after the �rst load.
In most case, as expected, both PLT and energy reduces signi�cantly when using caching, and the reduction

is well correlated. But in 3 of the Web pages, the reduction in energy is much more pronounced compared to PLT.
In some cases, the original Web page load consumes double the energy compared to when objects are cached,
but the PLT reduction is only 33%. Again, this observation has implications for Web developers. A developer
may conduct performance tests, conclude that caching is not useful, and may disable caching, even though it can
provide energy bene�ts.
Figure 12 shows the visualization of stackoverflow.com when the Web page is loaded with and without

caching. Caching only eliminates one object on the critical path (shown in red). The other activities on the
critical path are compute activities that are not a�ected by caching. As a result caching does not greatly help
performance.
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Fig. 12. Visualizing the page load process when loading stackoverflow.com with and without caching. The critical path is
shown in red.

However, the energy consumption depends on all objects, not only the critical objects. From Figure 12, it is
unclear if the additional Web object loads saved by caching indeed contribute to the energy reduction. In other
words, we need to determine the energy contribution of the object loads (in the non caching case) to conclude
that it is indeed the caching that reduces the energy. RECON provides just that. Our constituent analysis shows
that the energy contribution of the download components reduces by 81%, signi�cantly reducing the energy
consumption under caching.
In practice, it is di�cult to predict the contents of the cache since it is related to the user’s browsing history,

shared embedded objects among di�erent Web pages, etc. Fortunately, RECON does not rely on such predictions;
instead, RECON leverages the component-level information obtained via WProf-M after the Web page load to
estimate the page load energy consumption. In particular, if an object is in the cache during the page load, then
the (smaller) object load time obtained via WProf will re�ect the impact of this caching; RECON then leverages
this component length information to estimate the page load energy consumption.

7.4 Case Study #3: Compression Levels
The compression optimization compresses textual content so that objects can be downloaded more quickly
over the network. Typically, compression only works for the html �le, js, and css, since images are already in
compressed format. Once compressed, the object has to be decompressed at the client. To apply the compression
optimization on a Web page, we enable mod_gzip [15], a compression module, on our local Web server and load
the Web pages from this Web server. We perform our experiments in an emulated slow network condition. The
slow network condition is emulated using linux tra�c controller and the bandwidth is set to 1 Mbps and the
round trip delay is set to 50ms, which are typical 3G speeds [31].
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www.irs.gov	when	compression	level	9	is	applied	

www.irs.gov	when	compression	level	1	is	applied	

Fig. 13. Illustrating the increased delay in decompressing css (green bars) and js (brown bars) under compression level 9
(bo�om) when compared to level 1 (top) for irs.gov.

We conduct our experiments under two di�erent compression levels, level 1 and level 9, where the higher
compression level is more powerful. For most Web pages, compression provided little bene�t in terms of PLT
(under 15%).

However, the irs.govWeb site exhibits non-intuitive behavior upon compression. The more e�ective com-
pression level (level 9) reduces PLT by 47%, however, the less e�ective compression level reduces PLT by 78%. In
terms of energy, compression level 1 reduces energy by 75% compared to only a 39% reduction in energy under
level 9.

Using RECON’s energy breakdown, we observe that the energy consumed by the downloads (which includes the
decompression energy) reduces by 71% under level 1 when compared to level 9. Figure 13 shows the visualization
of irs.gov under di�erent compression levels. The visualization of an object download includes the time taken to
download the object and the time for decompression. The length of the green css and brown js components under
level 9 is longer than level 1 (note the di�erence in time scales), possibly because of the e�ect of decompression.

To validate this �nding, we �nd, using RECON, that the energy consumed by the CPU component is 37% higher
for level 9 compared to level 1. Similar to the ad blocker case study, this increase in CPU component may indicate
external factors, such as increased decompression overhead under level 9. Therefore, even if the compression
is more e�ective, the time and energy needed for decompression reduces the e�ectiveness. Compression level
1, although less e�ective, also takes less decompression time and energy, as suggested by the lower energy
consumed by the CPU.
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Finally, we analyze why otherWeb pages do not see improvements when using compression even under the slow
network. We �nd that, for most of the Web pages in our experiment, the root html �le is small, and compressing
this �le further does not provide enough bene�ts. Further, for these Web pages, either the js/css objects are small
or not on the critical path. Therefore, compressing these objects provides only modest improvements to energy
and PLT.

7.5 Case Study #4: Inlining Optimization
The inlining optimization embeds external js and css in the root html �le; as in the case of caching, only the
�rst-level objects are inlined. Inlining makes the initial html �le larger, increasing the network latency and
energy to download. However, once downloaded, there is no need to fetch the external js and css objects since
the html �le already has them inlined, thus avoiding several small downloads. Further, inlining reduces network
dependencies.

We load the 10 Web pages with and without inlining under two di�erent network conditions: A fast network
condition which is our typical experimental set up and a slower network condition, as described in the compression
case study.
In the fast network condition, 4 of the 10 Web pages bene�t from inlining, with an average PLT reduction

of 64% and average energy reduction of 48%. The remaining Web pages are small (load within 3 seconds) and
do not bene�t signi�cantly from inlining. On the slower network, we see a surprising reversal of trends. The
smaller Web pages are not a�ected by inlining, as before. However, for one of the Web pages, collegehumor.com,
inlining hurts PLT by a median 28%. For this same Web page, inlining helped PLT by 16% in the fast network.
Worse, under the slow network, energy increases by 38% upon inlining while the energy decreases under the
faster network. This behavior has implications for Web developers, who need to consider the di�erent e�ects of
their optimization under di�erent network conditions.

Our constituent analysis shows that, under slow network conditions, the energy consumption of the download
component increases upon inlining. In other words, the energy consumption for loading one large object (inlining)
is higher than the energy consumption of smaller objects (default) under poor network conditions. In the fast
network, there is not much di�erence in the energy of the download components.
But our observation for the download component indicates that all Web pages should see poor performance

under inlining under slow networks; however, we see this behavior for only one of the Web pages. Here we �nd
that collegehumor.com has a large number of embedded images which are dependent on the html download.
When the html download gets delayed, the subsequent image downloads also get delayed, leading to increased
PLT and increased energy. Other Web pages did not have this dependency.
Note that, in all the above examples, RECON can help identify which resources/components are causing the

energy drain. Explaining the root cause of why these constituents are causing the energy drain is beyond the
scope of RECON.

8 RELATED WORK
Given the importance of smartphone energy consumption, there has been considerable interest in modeling
device power. Below, we categorize the related work in terms of the techniques used for modeling.
Utilization-based power models: One of the most common modeling techniques for smartphone power is
resource utilization-based models. These models leverage the correlation between resource utilization and the
energy consumption. The typical modeling approach in to �rst establish a power model for individual hardware
components on the phone including the CPU, GPU, Screen, and the Network. Data for the model training is
typically collected using an external power monitor. PowerTutor [43] uses the Monsoon power monitor [7] to
measure the energy consumption under various CPU frequencies, WiFi data transfer rates, and screen brightness
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settings. PowerTutor estimates the power consumption on phones based on the battery discharge patterns and
the utilization-based models.

In many cases, utilization does not directly correlate with power consumption; for example, in cellular networks,
the power consumption continues even after all data transfer �nishes, because of tail e�ects [20]. To address this,
researchers use advanced models, such as �nite state machines (FSM), to represent the power consumption of
resources that do not correlate well with utilization alone [34]. PowerTutor itself uses an FSM to build a model for
cellular/WiFi power consumption. Chen et al. [23] use a hybrid model which uses a utilization-based model for
CPU and GPU, an FSM-based power model for wireless interfaces, and the average power usage of activities such
as WiFi beacon, cellular paging, and SOC suspension. Rather than using a commodity external power monitor
to model the power consumption of resources, Carroll et al. [22] use special hardware to measure the power
consumption. In most of the above works, the resource monitoring frequency is on the order of once per second
[23, 33], which is insu�cient for modeling Web pages (see §6.5).
ARO [34] is a complementary approach that models the device’s radio power consumption by analyzing

cellular packet traces to infer the RRC (Radio Resource Control) states. Since ARO focuses on radio, it does not
take into account the energy consumed by CPU and Web components. As illustrated by our case studies in §7,
the energy consumed by these constituents is non-trivial and can be critical in reasoning about Web page energy
consumption. Nonetheless, ARO’s bottom-up approach to track the radio energy can be invaluable to analyze
high throughput apps, and is complementary to RECON.
Power models using battery dynamics and system monitoring: The utilization-based approaches require
external power monitors (or custom hardware) and exhaustive training. Instead, other research works [26, 41, 42]
propose to build energy models without an external power monitor. Dong et al. [26] leverage the smart battery
interface on phones to get accurate battery consumption, and use this to build power models. V-edge [41] models
smartphone power by leveraging the instant battery voltage dynamics. Voltage levels change as the battery
drains, and V-edge learns this correlation. Appscope [42] models power consumption by monitoring the changes
at the kernel. AppScope monitors �ne-grained utilization at the Android Binder level and at the system call
level. Pathak et al. [33] perform �ne-grained system call tracing to model power consumption. They combine the
system call tracing with FSM power models to handle non-utilization-based power behaviors, such as the tail
power [20].
Building power models for in-the-wild studies: Shye et al. [37] employ the utilization-based modeling
approach to study the power behavior in the wild. This 2009 study �nds that CPU and screen are the two biggest
power consumers. Recently, Chen et al. [23] perform a more sophisticated utilization-based power modeling. The
paper describes a large-scale user study that examines the power consumption patterns of 1520 devices.
Power consumption of mobile browsers: There have been relatively few studies on power consumption of
speci�c applications, such as the mobile browser. While Qian et al. [34] study the resource and power consumption
of mobile browsers, they focus on the power consumed by the networking component of the browsers alone.
Our results (§7.1) show that browsers perform both networking and computing activities, and both consume
considerable power. We thus study the power consumption of mobile browsers as a whole.
The works described above, with the exception of Qian et al. [34], are macro-level studies: they study the

power consumption of the entire smartphone or long-running apps. Instead, the goal of RECON is to study the
power consumption at the micro-level for a speci�c application, namely mobile browsers. Leveraging utilization
models [23, 43] for such small time scales incurs high resource overhead, and consequently results in poor
modeling accuracy. System call or kernel tracing techniques [26, 41, 42] are operating system speci�c, and
not application speci�c. Instead, RECON combines application-speci�c component analysis with coarse-grained
resource modeling.

Note that there are other works, such as Zhu et al. [45, 46], that aim to improve browser power consumption,
but do not focus on modeling.
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9 CONCLUSION
Accurate energy modeling of the page load process is challenging because Web pages are complex and short-lived.
Deconstructing the energy consumption into constituent component- and resource-level contributions is even
more challenging because power monitors only report aggregate power consumption values. We present RECON,
a modeling approach that combines low-level page load information with coarse-grained resource monitoring. We
show that RECON can predict the energy consumption of 80 Web page loads with a mean error of less than 7%. We
employ RECON to accurately predict the impact of four di�erent Web page optimizations. Importantly, RECON’s
component- and resource-level energy deconstruction provides visibility into how and why an optimization
a�ects energy consumption; this information can be invaluable to Web developers and content providers who
wish to design e�cient Web pages. The RECON model is currently implemented in MATLAB. Code and relevant
scripts for RECON have been made available online [12].
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