Session 1: On the Horizon

MobiSys 19, June 17-21, 2019, Seoul, Korea

DeQA: On-Device Question Answering

Qingqing Cao
gicao@cs.stonybrook.edu
Stony Brook University

Niranjan Balasubramanian
niranjan@cs.stonybrook.edu
Stony Brook University

ABSTRACT

Today there is no effective support for device-wide question answer-
ing on mobile devices. State-of-the-art QA models are deep learning
behemoths designed for the cloud which run extremely slow and
require more memory than available on phones. We present DeQA,
a suite of latency- and memory- optimizations that adapts existing
QA systems to run completely locally on mobile phones. Specifi-
cally, we design two latency optimizations that (1) stops processing
documents if further processing cannot improve answer quality,
and (2) identifies computation that does not depend on the ques-
tion and moves it offline. These optimizations do not depend on
the QA model internals and can be applied to several existing QA
models. DeQA also implements a set of memory optimizations by (i)
loading partial indexes in memory, (ii) working with smaller units
of data, and (iii) replacing in-memory lookups with a key-value
database. We use DeQA to port three state-of-the-art QA systems
to the mobile device and evaluate over three datasets. The first is a
large scale SQuAD dataset defined over Wikipedia collection. We
also create two on-device QA datasets, one over a publicly available
email data collection and the other using a cross-app data collection
we obtain from two users. Our evaluations show that DeQA can run
QA models with only a few hundred MBs of memory and provides
at least 13x speedup on average on the mobile phone across all
three datasets.

CCS CONCEPTS

« Information systems — Question answering; - Human-
centered computing — Mobile computing; Mobile devices.

KEYWORDS

Question Answering; Mobile Devices; Mobile Systems

ACM Reference Format:

Qingqing Cao, Noah Weber, Niranjan Balasubramanian, and Aruna Bala-
subramanian. 2019. DeQA: On-Device Question Answering. In The 17th
Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys ’19), June 17-21, 2019, Seoul, Republic of Korea. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3307334.3326071

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys 19, June 17-21, 2019, Seoul, Republic of Korea

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6661-8/19/06....$15.00
https://doi.org/10.1145/3307334.3326071

27

Noah Weber
nwweber@cs.stonybrook.edu
Stony Brook University

Aruna Balasubramanian
arunab@cs.stonybrook.edu
Stony Brook University

1 INTRODUCTION

Mobile users today access content via multiple applications —
browsers, email, social media, and many more. A device-wide Ques-
tion Answering (QA) over all data accessed on a device can help
users find information efficiently.

Consider Mateo who is out looking for an off-the-counter medi-
cation for his diabetic son. He has browsed vendor sites, discussed
options with his son’s physician over email, and has gathered sug-
gestions from his social media friends. To decide on an alternative
at the store, Mateo needs to know: (a) the price of the product he
found earlier on the Web, (b) alternatives his friends suggest? and
(c) alternatives his physician suggested? The answers to these ques-
tions are in his email conversations, Web searches, and social media
feeds. A device-wide QA system can help him find these answers.

Unfortunately, such a device-wide QA system is difficult to de-
sign today. To do so, the QA system needs to work across device-
wide content rather than within a single application ecosystem,
such as email. This means the entire device content needs to be
shipped to the cloud. This is untenable for privacy, data protection,
and performance reasons (more discussions in §2).

We design DeQA (pronounced de-ka), which stands for on-device
QA, that runs completely locally on a mobile device. DeQA stores
data accessed by the user locally and then runs QA over this data.
Storing and indexing a user’s digital footprint is feasible on mobile
devices, given the large storage capacity on phones [16]. The cen-
tral challenge, however, is in running end-to-end QA systems on
mobile devices. State-of-the-art systems use deep learning based
QA models [35, 54, 57], which are unusably slow on mobile devices.

DeQA is a set of compute- and memory-optimizations to sig-
nificantly improve QA on mobile. We design DeQA to be broadly
applicable to existing QA systems by studying the common patterns
and bottlenecks of state-of-the-art QA models. To this end, we first
study three top-ranked QA models—RNet [54], MReader [35], and
QANet [57]—from the SQuAD 1.1 Leaderboard [50], a widely used
benchmark in the NLP community.

Even on a relatively new mobile phone (running Android 8 with
Snapdragon 820 CPU, 6GB RAM and 64GB storage) the three QA
systems take over 80 seconds to answer a single question, making
them unusable. The problem is, existing mobile deep learning opti-
mizations [32, 33, 37, 59] for vision/CNN applications do not apply
to QA, as we discuss in §4. Instead, we design three optimizations
based on our study:

(i) Dynamic Early Stopping Our first observation is that in
many cases the QA system does not need to process all documents
to answer a question. For easy questions the answer is likely found

https://doi.org/10.1145/3307334.3326071
https://doi.org/10.1145/3307334.3326071

Session 1: On the Horizon

immediately, in the top few documents, and for hard ones pro-
cessing more documents is unlikely to yield better answers. DeQA
formalizes this idea by designing a Dynamic Early Stopping algo-
rithm that predicts when further processing is going to be unhelpful.
The stopping algorithm uses a separate classifier for the predic-
tion, and the features used to train the classifier do not rely on the
internal states of the model or require model modifications.

(ii) Offloading Neural Encoding Our second observation is
that a large part of the computation performed by the QA model
does not depend on the question. If any processing does not depend
on the question, then it does not have to be computed at run time.
In fact, on all three models—RNet, MReader, and QANet—neural
encoding of the documents (§3) take over 50% of the time, but this
step is independent of the question. In DeQA, we move this neural
encoding out of the critical path and process them offline.

(iii) Memory Optimizations Even with the latency optimiza-
tions, existing QA systems cannot run as-is on mobile devices be-
cause of their memory requirements. QA systems trade memory
usage for latency benefits by processing documents as a whole to
locate answers, using an in-memory index for easy document re-
trieval, and performing in-memory lookups. DeQA reduces memory
requirements by (a) working with partial indexes loaded iteratively
in memory, (b) breaking down the job into smaller units of para-
graphs instead of documents, and (c) replacing in-memory lookups
with a key-value database.

We implement DeQA on two mobile platforms: Nvidia TX2
board [8] and OnePlus 3 Android phone [9]. We adapt RNet [54],
MReader [35], and QANet [57] to mobile devices using DeQA re-
quiring minimal changes to the QA models themselves.

We first evaluate the performance of DeQA on the Stanford
Question Answering Dataset (SQuAD) [50] and CuratedTrec [17]
dataset with over 10K question/answer pairs run over Wikipedia
collection stored locally. Using DeQA optimizations, the end-to-end
QA system only requires a few hundred megabytes of memory.
DeQA also reduces QA latencies by an average of 16x over the
phone and 6x over the board, with less than 1% drop in accuracy
for all 3 models.

There are no standard QA datasets for question answering over
on-device user data. Instead, we create two smaller datasets: (a) a
120 question-answer dataset created over publicly available email
collection from Enron [38], and (b) a 100 question-answer dataset
over data collected from two users across 5 different apps. The
cross-app data is created by recording content as users interact
with their apps over a 1 week period. For the email dataset, DeQA
improves latency by an average of 14x on the phone and 6x on
the board with a little more than 1% drop in accuracy for all three
models. For the cross-device dataset, DeQA improves latency by an
average of 13x on the phone with 1.5% accuracy drop.

2 MOTIVATION

Device-wide question answering is an important capability for
intelligent assistants. They have the potential to provide a single-
entry point for finding answers over content that is already available
on the user’s device. Here we motivate the need for such a device-
wide QA service that resides entirely on-device.

28

MobiSys 19, June 17-21, 2019, Seoul, Korea

Consider Alice, a New Yorker, who is on a business trip to Seoul.
She booked flights and hotel rooms, and she looked up information
about the local transportation, landmarks and tourist attractions
of Seoul before arrival. In Seoul, if she has questions about which
hotel she is staying in, her return flight schedule or the location of a
particular tourist location, she has two choices. Either re-search the
information or use a QA service that is provided by each individual
application, if available. Both of these options are burdensome
because Alice needs to remember where she got the information
from, or search in each app to see if the information is available. A
device-wide QA service, on the other hand, can provide a single
entry point for meeting all of Alice’s questions during her travel.

One possible solution for such a device-wide QA service is to al-
low a single cloud-based provider to integrate all of a user’s content
and provide a single QA service over the entire content. However,
this forces an unreasonable privacy tradeoff on the user where all
of the user data is now available to a single third-party service.
Indeed, by integrating all content, the third-party can now learn
even more information about the user than any single application
provider. Further, relying on a cloud service means Alice needs
to use a possibly expensive and unreliable international roaming
plan. Recently, secure enclaves in the cloud, such as SGX [5], have
becoming popular, where computation is performed within the
enclave without revealing sensitive user data. However, SGX en-
claves are extremely restricted in terms of compute and memory
capacity [36].

An on-device QA service, however, integrates content from dif-
ferent apps but keeps the integrated content entirely local, which
means users do not have to trust a single entity to store all of their
data. Further, being on-device allows the QA service to operate
even under unstable or expensive network conditions.

3 ARCHITECTURE OF QA MODELS

We envision a device-level QA solution that returns answers from
text locally available on the user device. This is similar to desktop
search [28] that supports search over local content, but our goal is
to go beyond search and support question answering which is a
more complicated task.

Previous studies have shown that a user’s local digital footprint
can be stored and indexed locally on a mobile device [16]. The key
challenge is in running QA over this data, which is the focus of the
paper. A complementary problem is in aggregating data accessed by
users across different apps for on-device QA. We leave this problem
for future work.

3.1 Question Answering Background

QA systems search through documents to locate candidate answers.
To avoid having to analyze a large number of documents, end-to-
end QA systems work in two stages. In the first search engine stage,
the system obtains a subset of documents relevant to the question,
and in the second stage the system runs complex QA models on
this subset. Figure 1 shows a typical end-to-end QA pipeline which
consists of the search engine and the QA model.

(i) Search engine A search engine uses an index, an efficient
lookup data structure, to find documents that match the question
keywords. It then returns a ranked set of documents according

Session 1: On the Horizon

Rank | Name Model Type | Cite
1 QANet Transformer | [57]
2 Reinforced Mnemonic | BiLSTM [35]
Reader (MReader)
3 RNet BiGRU [54]
4 SLOA+ BiLSTM (53]
5 Hybrid AoA Reader BiGRU [26]
6 BiDAF + SelfAttn + ELMo + | BiGRU [25]
A2D
7 MAMCN+ BiGRU [58]
8 MEMEN BiLSTM (48]
RaSoR + TR + LM BiLSTM [52]
10 | SAN BiLSTM [43]

Table 1: The top 10 QA models on the SQuAD dataset v1.1
as of September 18, 2018. We only rank models for which
technical details are available, and variations of the same
model are merged.

Question:
When did the second world war end
A3

/ﬁ h ~~ U
S 24 Scoring answer phrase

‘ 1.1 Query Generation ‘ ﬁ

ﬂ 23

‘1.2 Document Retriever ‘

| 2.1 Embedding
?—i{ Document

Embedding
Search Engine

Answer: 1945

~

Capturing document-question
interaction

2.2 Neural Encoding
Encoding
document phrases

Encoding
question phrase

o4

Figure 1: Question Answering Pipeline: There are two main
components. The search engine returns a sorted list of rele-
vant documents in response to the question. The QA model
uses a neural representation of the documents and the ques-
tion to score the potential answer phrases in the relevant
documents.

Question
Embedding

QA Model (our focus)

to the relevance of the document to the question, using a scoring
function. As users access new content, the search engine needs to
store the data and index it.

(ii) QA Model A QA model analyzes the top-n documents re-
turned by the search engine to score the phrases in the document as
possible answers. The core task that QA models perform is to verify
if the information contained in the potential answer phrase and
its surrounding context supports a claim (i.e., is the answer to the
question). This is a hard problem because the information can be
expressed through different words, split across multiple sentences,
and often might require significant amount of inference.

3.2 State-of-the-art QA models

Most state-of-the-art QA models today use deep learning to perform
the complex QA task. Table 1 lists top QA models (as of September
18, 2018) from the SQuADv1.1 leaderboard, a large scale benchmark
dataset that is widely-used in the NLP field.

29

MobiSys 19, June 17-21, 2019, Seoul, Korea

Most models use BiLSTM or BiGRU as encoding layers with
Recurrent Neural Network (RNN) [29] blocks, which compose
representations of inputs in a sequential manner. One model, the
QANet [57], uses self-attention encoding layers with transformer
blocks, which mimic RNN capabilities for modeling context with
fewer sequential dependencies. Transformer-based models have
gained popularity for QA over the last year (for example, BERT [27])
in part because they allow for deeper and larger models that can
be trained faster [27, 49], compared to the RNN models.

3.3 Structure of state-of-the-art QA models

The state-of-the-art QA models share a common underlying archi-
tecture and differ only in how they implement the architecture [55].
The right block in Figure 1 (QA Model) shows the processing steps
in the different layers of a QA model. We describe each step below:

Embeddings (2.1 in Figure 1) The first step in a QA model is
to map the words in the documents (and the question) to their
corresponding word embeddings. Embeddings are used to represent
each word as a k-dimensional real-valued vector. These vectors are
said to capture word meaning in the sense that words with similar
usages and meaning have similar vectors i.e., the vector distance be-
tween similar words is shorter than those between dissimilar words.

Neural Encoding (2.2 in Figure 1) The neural encoding layer
combines the word embeddings to produce a representation of
longer pieces of text. For instance, the meaning of a sentence can
be represented as the meaning of each word in the context of the
entire sentence. The encoding layers in QA models use RNNs such
as BiLSTMs [54] or transformers [57].

Question document interaction: (2.3 in Figure 1) The encod-
ing layers usually produce independent representations of the
question and passage. The interaction layer creates a representation
of the passage that is related to the question at hand. A passage
might contain many different pieces of information, and the
interaction layer allows the model to emphasize the relevant
portions of the passage.

Scoring (2.4 in Figure 1) The scoring layer uses the neural rep-
resentation and the interaction information to locate answers by
looking for the most likely starting and ending positions for the
answer. The models evaluates each start and end position and pro-
vides a score. The answer phrase with the highest score is returned
as the final answer.

4 BOTTLENECKS IN RUNNING QA MODELS
ON MOBILE DEVICES

We study the bottlenecks of three end-to-end QA systems instan-
tiated with the top-ranked QA models from Table 1-QANet [57],
MReader [35], and RNet [54]. The QA systems all use a search en-
gine to retrieve relevant documents and then run one of the three
models over the documents to answer the question.

One challenge is that existing QA systems simply will not run on
mobile devices due to their memory requirement. DeQA’s memory
optimization reduces the memory requirements of the QA systems

Session 1: On the Horizon

to fit on mobile. We conduct the latency benchmarks over this
memory-optimized version. We discuss the memory optimizations
in §6 and focus on the latency bottlenecks in this section.

4.1 Measurement setup

QA Dataset We study the performance of QA systems using
SQuADv1.1 [50], a large question-answer dataset that is widely
used within the NLP community to evaluate QA models. The dataset
is built using Wikipedia text as its knowledge source containing
5.5 million articles amounting to 12 GB of data stored on disk. The
recently introduced SQuADvV2.0 is a harder dataset that includes
questions that may not have an answer in the given document con-
text. But in the full Wikipedia setting, those no-answer questions
can have correct answers potentially, therefore, for our purposes
we find SQuADvV1.1 is more suitable.

We use SQuUAD because there are no standard datasets for QA
over personalized on-device user data. In our evaluation (§9) we
create two new datasets over on-device user data and show that
the bottlenecks are similar on these datasets.

Methodology The models are trained on a collection of 240k
question answer pairs from SQuAD [50], CuratedTrec [17], Wiki-
Movies [45], and WebQuestions [18]. For training purposes the
models not only need the answers to questions, but also need to
know where the correct answers are found in text. To this end,
given the questions and their answers, we use the distant super-
vision procedure described in DrQA [23] to automatically locate
the answers within the text and generate labeled answer spans. We
tune the model’s hyperparameters on the dev set in the SQUAD
dataset.

For testing we use the dev split (10k questions) from SQuAD
and the test split (694 questions) of the CuratedTrec dataset.

Device specification: We benchmark the QA systems on four
devices: (i) Cloud: A machine from the Google Cloud Platform
which has 8 vCPUs, 32 GB memory, 2 x NVIDIA Tesla T4 GPUs,
100GB SSD disk, (ii) PC: an Intel PC running Ubuntu with a 3.4
GHz CPU, GTX 1070 GPU and 32GB memory, (iii) Mobile Board:
A next generation NVidia Jetson TX2 [8] development board with
quad core ARM 64bit CPU, a 256-core CUDA GPU, 8GB memory,
and 128GB storage. The TX2 board is a high performance platform
for next generation applications such as autonomous driving [44]
and VR headsets [4, 6], (iv) Mobile Phone: A OnePlus 3 Android
Phone [9] running Android 8.0. The phone runs a Snapdragon 820
CPU, with 6GB RAM and 64GB storage.

Metrics The accuracy of the QA system is measured as the percent-
age of questions for which the answer is within the top 5 phrases
returned by the QA model. All experiments on the TX2 board use
CUDA GPU [3] by default.

4.2 Latency of existing QA systems on mobile

Table 2 shows the latencies for running the three top-ranked QA
systems on the cloud platform, the desktop PC, and the two mobile
platforms. First, on the cloud platform, answering a question only
takes a few hundred milliseconds while the desktop PC takes a few

30

MobiSys 19, June 17-21, 2019, Seoul, Korea

seconds to answer a question. This is not surprising given that the
cloud GPU is more powerful than that of the desktop PC. With two
GPUs, the cloud platform can process all the documents in parallel.

On the mobile platforms, it takes much longer to answer a ques-
tion even compared to the desktop PC. For instance, on the mobile
phone, answering a single question takes over a minute, making it
effectively unusable.

MReader | RNet QANet
Cloud 314 ms 235 ms | 209 ms
| DesktopPC [3.63s [511s [313s |
Mobile platforms
TX2 Board 2413 s 28.48 s | 23.48 s
Mobile Phone | 81.68 s 88.55s | 80.66 s

Table 2: Latencies of running QA systems on the cloud, desk-
top PC, and the two mobile platforms. Answering a question
only takes a few hundred milliseconds on the cloud and a
few seconds on the PC. QA takes much longer on the mobile
platforms, requiring more than a minute on the phone.

4.3 Bottlenecks on the mobile device

A QA system has several components as shown in Figure 1. We
breakdown the QA latency to study where the main bottleneck is
for two models MReader and RNet. The bottlenecks were similar
for QANet. This study was done on the TX2 board.

Table 3 shows the breakdown in terms of percentage time for
the different components. The key bottleneck is in neural represen-
tation of the paragraphs. About half of the processing time is spent
in encoding paragraphs i.e., in processing the retrieved paragraphs
through the RNN layers in the case of MReader and RNet, and
the transformer blocks in the case of QANet. None of the other
individual steps are significant bottlenecks by themselves.

The question we answer in DeQA is, how can we address the
bottleneck in the deep learning layers to significantly reduce QA
latency on mobile devices?

4.4 Using existing deep learning optimizations
for QA

A natural idea to improve QA performance, given that the deep
learning component is the bottleneck, is to use existing deep learn-
ing optimizations designed for mobile phones. Most existing opti-
mizations have focused on running general deep neural networks
(DNNs) and Convolutional Neural Networks (CNNs). While these
work well for vision and sensing applications [19, 41, 42], they are
ill-suited for optimizing the QA models.

Existing QA models process a large amount of data for every
question (138 documents, 120k words). Even though the time taken
to process each document through the RNN model is small, the
latency increases because of the number of documents that need to
be processed. In contrast, vision models themselves are large but
the models do not process large amounts of data. As a result, several
CNN optimizations focus on model compression and pruning [32,
33, 59]. In contrast, the QA model sizes are already small.

Second, the encoding layers in these models often have more
dependencies and therefore fewer opportunities for parallelism

Session 1: On the Horizon

QA Stage MReader RNet
1. Search Engine 15% 10.4%
2. Embeddl.ngs and 8.53% 9.01%
preprocessing

2.2 Encoding Question 8.47% 8.96%
2.2 Encoding neural Rep of 48.54% 52.267%
Paragraphs

2.3 Capturing interactions 16.38% 13.17%
2.4 Classifying answer spans 2.24% 2.76%
Total time 24.127 s 28477 s

Table 3: The latency breakdown for each component of the
QA pipeline for MReader [35] and RNet [54]. The results
show the percentage time spent in each component when
answering questions from the CuratedTrec-test dataset (694
questions) on the TX2 board. Encoding the Neural Represen-
tation of Paragraphs is the main bottleneck, accounting for
nearly 50% of the total time.

compared to the CNN models, where filters are extremely paral-
lelizable. While QA models can be parallelized at the document level,
one cannot easily parallelize the processing within a document.

5 DeQA LATENCY OPTIMIZATIONS

In DeQA we design latency optimizations that significantly reduce
the time taken to run end-to-end QA on a constrained mobile device.
We do not want the optimizations to rely on the internals of the QA
models because even if they provide benefits for one model, they
may not be effective for others. Instead, the DeQA optimizations
are designed by leveraging common patterns of existing QA models
(Figure 1) and a bottleneck analysis (Table 3).

The QA model (including all the optimizations) are trained offline,
once for a given model. The trained model runs on the user device
to answer questions. Before running end-to-end QA for the first
time, we index all documents accessed by the user across all apps
and store them locally. The question answering system is run over
this index. Of course, as new documents arrive, we need to update
the index incrementally. We show in §8.2 that this incremental
indexing incurs negligible energy and latency.

5.1 Dynamic Early Stopping

Our preliminary study shows that the QA model pipeline is the key
latency bottleneck. The one reason for this bottleneck is the amount
of data that is processed by the encoding layers. A document con-
tains a large number of words, and encoding these words increases
QA latency significantly. Instead, we propose an early stopping
algorithm where the QA models do not process all the documents.
The algorithm indicates when processing further documents will
not improve answer accuracy.

5.1.1 Early Stopping: Answer Distribution. The effectiveness of a
stopping strategy depends on how the correct answers are dis-
tributed. Recall that the search engine returns a ranked list of docu-
ments according to the relevance of the document to the question,
and the QA model runs on this ranked list of document. Naturally,
a common premise in QA systems is that the answers are more
likely to be found in the top ranked documents.

31

MobiSys 19, June 17-21, 2019, Seoul, Korea

09 Correct Answer Rank CDF ——

08
07+
06 .
05
04
03
02t

o1/

Accumulated Rank Percentage (%)

20 40 60 80 100 120 140

Paragraph Rank
Figure 2: CDF of the ranks of the paragraphs that contain the
correct answer. The correct answers are evenly distributed

across all ranks. Therefore, using a fixed stopping algorithm
will result is not finding the answer in many cases.

Given this, a reasonable approach would be to process only a
small fixed number of top documents (or paragraphs') for every
question. However it turns out that the answers are not always
found in the top ranks. Figure 2 shows that the correct answers are
evenly distributed across all ranks. Specifically, if you process the
top 150 paragraphs returned by the search engine, 50% of the time
the paragraph that contains the correct answer is within the top 60
documents according to the search engine ranking.

Suppose we had a perfect QA model. It will correctly answer a
quarter of the questions when processing top 20 paragraphs for each
question, answer about half with top 60 paragraphs, and answer
three quarters with top 100 paragraphs. This means that while some
questions can be answered with a small number of paragraphs,
others require more. Therefore, no fixed choice is optimal for both
accuracy and latency (as also corroborated in our evaluation in §8).

5.1.2 Dynamic Early Stopping Classifier. Our approach is based
on the observation that stopping early makes sense for questions
that are too easy or too hard. For easy questions the answer is
presumably found in the early documents, and the QA model is
able to provide a significantly high score to the correct answer
compared to the other candidates. For hard questions the QA model
will find no candidate answer to be satisfactory and will provide
low scores to all candidate answers seen so far. In either case it is
better to stop as further processing is unlikely to change the QA
model’s final answer.

Figure 3 illustrates the main idea of our early stopping algorithm?,
As noted before, the QA model processes the paragraphs in the
order ranked by the search engine. After each paragraph (or batch of
paragraphs), the classifier is asked to predict whether to continue
processing more paragraphs or stop and return its current best
answer. We model this as a supervised classification task using the
following features:

1. Retrieval scores — The retrieval score, which is used to rank the
paragraphs by the search engine, is an indicator of the relevance of
the paragraph to the question.

!We use paragraphs for the rest of the early stopping description because DeQA uses
paragraph retrieval instead of document retrieval, as we discuss in §6

This is unrelated to the machine learning term used to denote the early stopping of
training using performance on a development set.

Session 1: On the Horizon

Current Answers

Paragraphs
to process
—al
- ——| Scoring CA
Function A i
=
I I
continue|
Stopping
Classifier

Top answers

Figure 3: Early stopping model: At each time step the current
outputs from the DeQA model are evaluated by the early
stopping classifier to decide to stop or continue processing.

2. QA Model Scores — The QA scores indicate the confidence of the
QA model with respect to the answers it has seen thus far.

3. Z-Scores — When the correct answer is found we’d expect to see a
large increase in the answer score compared to the previous scores.
To model this, we measure how much the answer score deviates
from the previous scores by using the log-transformed Z-score [12]
of the current answer score. The Z-score [12] measures the distance
between the data point and the mean in terms of the number of
standard deviations. The intuition is that for hard questions or cases
when the model is confused, one would expect similar (possibly
low) scores to all answer candidates. In these cases, the largest
deviation is likely to be small. To capture this we also track the
largest Z-score thus far.

4. Duplicate Answers — The number of repeated answers from differ-
ent paragraphs is a good indicator that the answer is likely to be
correct.

5. Paragraphs Processed — The more the number of documents pro-
cessed, the less likely that processing further will be useful. To
incorporate the number of paragraphs processed, we use rank indi-
cator features f;.. such that f5.. is equal to 1 if we have processed
between s and e documents, and 0 otherwise.

By relying only on the output scores, the early stopping opti-
mization remains generic and model agnostic — it neither changes
the architecture of the QA models nor assumes expert knowledge
about the internals of the model. We discuss the classifier training
and implementation details of our early stopping classifier in §7.

5.2 Offline Neural Encoding

For the second optimization, we analyze the QA pipeline to identify
computational units that do not depend on the question. The idea
is that if the computation is independent of the question, they do
not have to be computed at runtime.

For many QA models, though not all, the neural encoding of
documents and the question encoding are performed independently.
The QA models do perform a question-guided representation of the
documents, but this is done after the encoding step. The three QA
models in our study QANet [57], RNet [54], and MReader [35], all
perform document and question encoding independently.

Recall that the neural encoding of documents is the key bottle-
neck in the QA models we study, accounting for about 50% of the
time (§4). Our basic optimization, therefore, is to pre-process the

32

MobiSys 19, June 17-21, 2019, Seoul, Korea

documents and turn them into encodings and store them in a file-
backed key-value database. At run-time, for a given question, when
we iteratively process each document given by the search engine,
we use the document id to fetch the pre-computed document encod-
ing and feed it to the subsequent layers in the QA model. Fetching
the pre-processed neural encoding is not expensive, requiring 10ms
for a paragraph. Our evaluation shows that this offline encoding
reduces latency by 2x across all the models we evaluated (§8).

Of course, pre-processing the documents is not free as we trade-
off storage for compute. Pre-computing encoding reduces compute
latency during runtime, but the pre-computed encodings needs to
be stored in disk requiring storage. For the Wikipedia dataset, we
require 5GB of disk space to store all the encodings. In our current
implementation, we store all the neural encoding in disk. As part of
future work, we will investigate the use of memoization techniques
to store the neural encodings of documents at runtime and re-use
them, especially for documents that are accessed often.

Note that the two DeQA optimizations can also be applied to
QA systems deployed on the cloud, but they are less relevant. First,
cloud platforms have powerful GPUs that can process several tens
of documents in parallel, reducing the effectiveness of early stop-
ping. The offline neural encoding can reduce compute, but our
experiments show that pre-computing document encoding reduces
QA latency by less than 10% when run on the cloud, suggesting
that neural encoding is likely not the bottleneck on cloud GPUs.

5.3 Other optimizations

We also explore the use of GPU offloading and batch processing to
further optimize QA latency. Since QA models are built using RNNs
and self-attention, computation within these models is not easily
parallelizable, unlike CNN models. However, we can parallelize
paragraph processing over the GPU.

On the mobile board, offloading to GPU and processing multiple
paragraphs in parallel is trivial. However, offloading to the phone
GPU is harder. This is because existing deep learning frameworks,
including TensorFlow, Keras, CNTK, MXNet, PyTorch, Caffe2, do
not support GPU offloading on the phone, as of the writing of this
paper. Instead we use a data-parallel computation language called
RenderScript [14] to rewrite the QA models. Renderscript provides
support for GPU offloading and batch processing.

While batch processing on the GPU can significantly reduce QA
latency, it also increases power consumption. We analyze this trade-
off between latency and power in §8. We find that batch processing
by itself significantly increases power consumption, but coupled
with the two DeQA optimizations, the power consumption is signifi-
cantly lowered. This is because, the DeQA optimizations reduce the
amount of computation required, making batch processing more
energy efficient.

6 DeQA MEMORY OPTIMIZATIONS

We design a set of memory optimizations so that existing end-to-
end QA systems can be loaded on memory-constrained devices.

Session 1: On the Horizon

6.1 Memory requirements of existing QA
systems

The QA models—RNet, QANet, and MReader, are reading com-
prehension models that work on documents returned by a search
engine. To make these QA models work end-to-end, we use the
TF-IDF search engine used by a popular end-to-end QA system
known as DrQA [23]. DrQA also has a deep-learning based QA
model, but this model performs poorly compared to our top-ranked
QA models, so we don’t include it in our study. The study set up
and the QA dataset is the same as described in §4.1.

Table 4 shows the memory requirements of the three end-to-end
QA systems. The memory is dominated by the search engine. The
QA models themselves are roughly comparable to each other.

The search engine requires that the index of the document col-
lection be loaded in-memory. The size of this index is a function of
the document collection. For the Wikipedia document collection
(12 GB), the size of the index is 13 GB. Even the next generation
TX2 board only has 8 GB of memory. Of course, if the document
collection is small, the size of the index would be smaller and can fit
on the board, but our goal is to not restrict the local data collection
over which the user wishes to ask a question.

Index | MReader | RNet QANet
13GB | 272MB 279MB | 270MB
Table 4: Memory requirement for running the end-to-end
QA service, including the size of the model and the size of
the in-memory search engine

In addition Android sets a hard limit on the heap size for each
app [1]. Even high-end mobile devices such as OnePlus 3 have a
per-application memory limit of 256MB, even though the phone
itself has a larger memory capacity. With this limited app memory,
the phones cannot even load the QA models let alone the search

Storage Type
Storage Size

engine index.
The result is that existing QA services simply cannot run on
either of our mobile devices as-is.

6.2 Loading partial index using Lucene

One reason for the large memory requirement is the need to load
search engine indexes in-memory. One obvious optimization is to
only load partial indexes in-memory, which is shown to work for
mobile devices [16]. To this end, we use Lucene [2], a standard
search engine. We modified a recent version (7.5.0) of Lucene Core
to run on Android. Lucene uses a file-backed index, parts of which
can be loaded on demand. Lucene performs search on the loaded
portions, and combines the results to produce a final ranking.

6.3 Moving from document to paragraph
retrieval

The problem is that the partial index approach does not completely
solve the memory issues of running QA on mobiles. The QA models,
by default, take as input a set of relevant documents from the search
engine. A document contains a substantial amount of words, and
analyzing a large number of documents to score answer phrases can
increase memory requirement. In our experiments the QA model
was only able to process 50 retrieved documents (roughly 120,000
words) before the memory ran out.

33

MobiSys 19, June 17-21, 2019, Seoul, Korea

90 —
80 | %' Document J
70 Paragraph

DrQA Answer Extraction Time (s)

5 10 15 20 50 100 150 175 200
Number of Documents/Paragraphs to process

Figure 4: The average time to retrieve answers when process-
ing paragraphs versus documents.

70 . . T
Document

60 r Paragraph S 1

50

40 ¢
30
20
10

DrQA End to End Accuracy (%)

15 20 50 100 150 175 200
Number of Documents/Paragraphs to retrieve

5 10

Figure 5: The accuracy when retrieving answers when pro-
cessing paragraphs versus documents.

While it is possible to iteratively process fewer documents in
batches, we instead move the unit of analysis to paragraphs. This
strategy not only reduces the memory requirements, but also helps
improve latency and overall accuracy.

Figures 4 and 5 shows the time to extract the answers, without
retrieval time, and the accuracy respectively when the QA model
runs over document versus paragraph retrieval. These experiments
ran on the mobile board [8]. The figure shows that the QA model
can process a far greater number of paragraphs without memory
issues, since the number of words that are being processed is much
smaller (less than 25,000 words in 200 paragraphs).

However, processing a smaller number of total words does not
affect accuracy; in fact, the accuracy of QA when working with
paragraphs is much higher compared to documents. This is because,
a paragraph that matches many of the question terms is more likely
to contain the answer than a document that matches the question
terms, potentially in different sections. In our evaluation, we use
150 paragraphs as input to the QA model, because increasing the
number of paragraphs further did not improve accuracy commen-
surately.

6.4 Replacing in-memory lookup with a
key-value database

The first two approaches bring down the memory requirement of
QA systems to run on the board. However, end-to-end QA still
cannot run on the phone because each application on the phone
cannot use more than 256 MB. The QA models themselves are larger
than 256MB (Table 4).

Session 1: On the Horizon

When we break down the model size, we find that the large size
of the model is due to the size of the word embeddings. For example,
the RNet model size is 279 MB, out of which the word embeddings
account for 257.3MB and model weights account for 23.9MB.

Recall that the word embeddings is a mapping of words to a k-
dimensional vector. Each phrase is processed by mapping the words
in the phrase to its corresponding embedding. The embeddings are
loaded in-memory for quick lookup. To process a sentence, the
model only needs a small set of embeddings; those corresponding
to the words contained in the sentence. Further, the embeddings are
static and do not change during the QA process. To reduce memory
requirement, we replace the in-memory lookup with an efficient
lightweight key-value database called PalDB [10].

The QA models now only contain the model weights, whose
size is less than 30 MB for all three models. We also find that the
key-value database lookup does not increase latency; look up for
200 random words takes less than 15ms.

7 DeQA IMPLEMENTATION

We implement DeQA on the Nvidia Jetson TX2 board and OnePlus
3 Phone (§4.1). We also experiment with the Pixel 2 phone and find
that the results are qualitatively similar to the OnePlus 3 phone.
The implementation follows the DeQA design (§5 and §6).
Porting QA models to phones using DeQA

We port the three state-of-the-art QA models—RNet [54],
MReader [35], QANet [57] to use DeQA. Figure 6 shows how the
existing QA models are ported to the mobile board [8]. The only
change to the QA models is to separate out the embeddings from
the model weights using a database (§6). DeQA interfaces with the
existing QA model to obtain the features necessary to train the early
stopping classifier (§5). These changes do not require modifications
to the existing QA models.

There is one engineering challenge in porting QA models to the
mobile phone. Many of these models are written in PyTorch [11]
which is not compatible with Android devices. We rewrote the
original QA models in TensorFlow and Renderscript (for GPU of-
floading). We verified that the implementations achieve similar
performance as reported in the original papers. To each of these
models, we add the Lucene-based search engine (§6), to make them
end-to-end QA systems.

Training the early stopping classifier

We implement early stopping using a binary classifier which
outputs stop or continue decisions after processing each paragraph.
We create multiple instances for each question, one for each position
in the ranked list of passages provided by the search engine. The
task is to decide if the model should stop processing at this position
or continue to process more. An instance is labeled ‘stop’ if the
correct answer (or the eventual answer) returned by the system
doesn’t change after this position. Otherwise it is labeled ‘continue’.

We use the XGBoost [24] library to train a logistic gradient boost-
ing decision tree classifier over the features described in §5.1. We
set the hyper-parameters for classifier as follows: max tree depth
is 6, learning rate is set to 0.3, max delta step is 3. We trained
the classifier for 10 epochs. The classifier outputs a score that re-
flects its confidence on whether the processing should continue or
stop. Rather than use the classification decision directly, we learn a

34

MobiSys 19, June 17-21, 2019, Seoul, Korea

Original QA Service

QA Model
Model Weights)
question) Search Engine —y > answer
Word Embeddings
On-Demand
Embeddings
QA Model
question — | Memory-Optimized — Model Weights | answer

Search Engine

Continue/
Stop

ﬁfeatures

Early Stopping Model

DeQA Mobile-Optimized QA Service

Figure 6: Porting an existing QA system to the mobile device
using DeQA. The original QA model is not changed beyond
separating the model weights from the word embeddings.

largest Z-score ;338

retrieval score 87
(%}
[
o
% repeated answers 18
Q
w

answer score 203
processed paragraphs 48
6 Sb 160 1%0 260 2%0 360 3_;:0

Frequency Score

Figure 7: The frequency of occurrence of different features
used to train the early stopping classifier. The frequency of
occurence is a proxy for feature importance, with higher val-
ues indicating more importance. The Z-score and the docu-
ment retrieval score are the most important features.

threshold that gives a suitable trade-off for accuracy versus latency
on a development set. To reduce the inference overhead of the clas-
sifier, we use the Treelite [13] library to deploy the classifier on
both the board and the phone.

We use the decision tree classifier to find the importance of the
different features. The classifier provides the frequency with which
each feature occurs in the decision tree, which is a proxy for feature
importance. Figure 7 shows the importance of each feature in terms
of frequency of occurrence. Z-score and document retrieval score
are most important compared to the other features.

8 EVALUATIONS

DeQA’s optimizations reduce the memory requirements of the end-
to-end QA systems to under 256 MB. This allows the QA systems to
run on both the TX2 board and the phone. Our evaluation of three
QA systems show that
o DeQA reduces end-to-end QA time on the phone by an aver-
age of 16x on the SQuAD dataset with less than 1% loss in
accuracy. On an average, DeQA takes less than 5 seconds to
answer a question.

Session 1: On the Horizon

e DeQA reduces the energy required to answer a question by
9x. The result is that it takes less energy to answer a question
using DeQA than to load a Web page from the Internet.

e Ontwo QA datasets over on-device user content—one dataset
over email data and another dataset over cross-app data—
DeQA improves QA latency by an average of 14x and 13x
on the email and cross-app datasets, respectively (§9).

8.1 Experimental Setup and Methodology

QA datasets We use the same setup as described in §4.1. In this
section, we show the results of evaluating DeQA using the SQuAD
dataset over the Wikipedia collection. We also evaluate DeQA over
a QA dataset created over two on-device user data collections,
which we discuss in §9.

Comparisons: We evaluate three end-to-end QA systems that all
use a Lucene-based search engine as described in §6. The three
systems use RNet [54], QANet [57], and MReader [35], the top-
ranked QA models. We compare the performance of the following
versions of the QA systems:

o ExistingQA - This is the original version of the QA system
without any optimizations. This version does not run on
mobile devices.

e DeQA (mem) - This is the memory-optimized version that
can run on mobile devices, but is not optimized for latency.

e DeQA (ES) - This refers to the version that uses dynamic
early stopping (ES) on top of the memory-optimized version.

e DeQA (ES + OE) - This version uses both the optimizations,
dynamic early stopping and Offline Neural Encoding (OE).

e DeQA - This is the fully optimized version with all of the
memory and latency optimizations. The latency optimiza-
tions include ES, OE, and Batch Processing.

Devices All experiments are conducted on the OnePlus 3 phone
and the TX2 board as described in §4. We measure energy using
Monsoon Power Monitor [7].

8.2 DeQA Latency, Energy, and Accuracy

Figure 8a and Figure 8b shows the performance of the three QA
systems on the phone and the board, respectively. The existing QA
systems cannot run on the device, and is shown using the infinity
bar. DeQA (mem), the memory-optimized version that can run on
the phone but is not optimized for latency, takes over a minute to
answer a single question on the phone.

Latency: DeQA reduces the time to answer a question by an aver-
age of 16x on the phone and an average of 6x on the board. Recall
that on a desktop, QA takes an average of 4 seconds (Table 2). In
effect, with DeQA, the QA latency on the mobile is comparable to
that of a desktop.

As a further point of comparison, according to a 2017 study, the
average time to load a mobile Web page over LTE is 5 seconds [51];
loading a heavy page takes over 10 seconds. In other words, DeQA
can support local question answering with speeds comparable to
(or even less than) searching over the Internet.

Accuracy: Accuracy is the fraction of questions for which we get
at least one correct answer in the top 5 ranked candidate answers

35

MobiSys 19, June 17-21, 2019, Seoul, Korea

returned by the system. This evaluation is focused on factoid ques-
tions, where typically a question has only one correct answer. Fig-
ure 8c shows that the DeQA optimization does not come at a cost of
QA accuracy. The adapted systems work within 1% of the accuracy
of the original QA system. The accuracy results are same for both
the board and the phone, since they both run the same QA model.
Energy: Figure 9 shows that DeQA reduces energy consumption
of answering a question to 6] on an average. Without DeQA, the
energy consumption is over 50] across all three QA systems. For
these experiments, we averaged the energy consumption over 10
questions chosen randomly.

As a point of comparison, the median energy to load the top

100 Web page on mobile is 12] [22]. The energy consumption with
DeQA includes the end-to-end energy, including retrieving para-
graphs from the search engine, running the QA model, using the
early stopping classifier, retrieving neural encodings from disk, and
batching.
Incremental Indexing: We also separately evaluated the energy
(and the latency) to incrementally index content. This is required
because users will continue accessing new content that need to
be indexed locally. Incremental indexing only required 166m] per
document and took about 13ms per document.

8.3 DeQA components

DeQA has two key optimizations—the early stopping (ES) and Of-
fline Neural Encoding (OE). DeQA couples these with a standard
batch processing technique. Figures 10 shows the improvements (on
the phone) of each technique in DeQA optimization when applied
iteratively — early stopping (ES) by itself, combining ES with OE,
and three optimizations together. The two optimizations combined
provide a 4x benefit and the batch processing provides a further 4x
benefit.

We applied the optimizations in other combinations and found
that applying early stopping and offline encoding followed by batch
processing provides the most benefits both in terms of performance
and power. Although it appears that batch processing is powerful,
we show in §8.4 that batch processing applied by itself without the
other DeQA optimizations require 3 times as much energy. This
is because DeQA optimizations reduce the amount of processing
required, which reduces the burden on batch processing.

8.4 Digging deeper into the optimizations

We explore the optimizations further to understand their trade-offs.
Why dynamic early stopping? Early stopping predicts when
further processing is not useful. A simpler strategy is to always
stop processing paragraphs after a fixed number of paragraphs.
The problem is that if you process too few paragraphs, the answer
extraction time reduces but the accuracy drops (and vice-versa if
you process too many).

In Figure 11 we show that this simple strategy of a fixed stopping
threshold is not enough. We vary the stopping threshold and show
results for RNet and MReader, but the results are similar for QANet.
The RNet model takes 18 seconds to extract answers when process-
ing 100 paragraphs but incurs a 2% drop in accuracy compared to
using 150 paragraphs. If RNet is forced to use only 20 paragraphs

Session 1: On the Horizon

MobiSys 19, June 17-21, 2019, Seoul, Korea

i i 40 {0t ot it 5 : . .
@ el £ ExistingQA &< - o] £ o ExistingQA Exx
£ 120 1 gy i X Kl 5 &
> % K DeQA (mem) 3B K K ¥] DeQA (mem) q
9 B :) K K 5!
S 100 | § k DeQA &3 g DeQA &9 5 4 i
£ & i g 30 & (2848 £] <
© o B3] K & B3
~ s k3 o 4 K & ot e
< & & %1 80.66 25 | fgears K & 1 o
80 | KX S s < oo e %23.48 3]
K K K & K K a
<} & & & ¢} £ & &
K K K & s K >
el Jogs 1 1 ke L [oed oed 4
K K K 20 it K K o
$ 60K s s < st oo s &
: K K K 9 & & K 5
[°] & & & e 151 & & & 1 3 2 1
> sl K B by & £ B 5}
2 40 3 4 2 & <
] % S 10 ks & & <
& u [k & B 1 S
® it ° K K i 1 08 08
2 & ° K & B : 0.7
20 | & T Biase 1 K9 498 -
S K 5 el s 591 3.85 1 1
£ it =] K BS 5
o K 5911633] £ & s
MReader RNet QANet MReader RNet QANet MReader RNet QANet

(a) End-to-end QA latency across the three
QA systems on the phone.

(b) End-to-end QA latency across the three
QA systems on the board

(c) DeQA accuracy drop compared to the
original QA systems.

Figure 8: Latency benefits and accuracy of DeQA: End-to-end latency reduces on an average of 16x on the phone, and on average
of 6x on the board with less than a 1% drop in overall accuracy. In (a) and (b) inf indicates that the QA system could not be
loaded on the device. In (c) the accuracies are the same on the phone and the board, so we only report on one set of accuracies.

DeQA (mem) DeQA &
__ 70 ; ‘ ‘
2
5 60 L 5549 58.36 1
3 51.76
S 50 1
o
g 40]
>
> 30 1
[
5
o 20 1
g
5 10 6.33 5.84 6.90 g
< N N ‘

MReader RNet QANet

Figure 9: Energy Consumption (on the phone) with and with-
out DeQA across the three QA systems.

Phone End-to-end QA Latency (s)

100

90

80
70
60
50

30
20
10

DeQA (mem) =@ DeQAES + OE

DeQA

ES

DeQA

=N

81.36

40.36

22.35

%5.15
NI

88.26

33.27

2056
7

80.37

38.68
28.40

%sas
N

MReader

RNet

QANet

Figure 10: Latency improvements with DeQA when opti-
mizations are applied iteratively.

then it finishes faster, within 3.2 seconds but incurs a higher drop
in accuracy, by 4%.

DeQA’s early stopping can balance the accuracy and time trade-
off by stopping early if further processing is unlikely to be useful. As
a result, the answer extraction time with Early Stopping is around
3.5 seconds (similar to processing only 20 paragraphs), but the
accuracy drops less than 1%. The figure only shows the answer
extraction time, excluding retrieval time.

Energy versus performance trade-off with batch processing
Figure 12 shows the energy consumption when using batching

36

MReadeDrop MReaderTime
RNetDrop RNetTime ——=—

14 : : ‘ ‘ 30 &
g 2 P
<] =
S 10 | 20 c
a 81| 2
> r 15 S
[&] 6 1 =
Y L 10 =
< 5| 5 z
C
0 0 <

20 40 60 80 100 120 140
Fixed Stopping Position

Figure 11: QA accuracy drop and answer extraction time
when using a fixed stopping algorithm rather than DeQA’s
dynamic early stopping algorithm. DeQA has a better an-
swer extraction time/accuracy trade-off compared to using
any of the fixed stopping threshold.

alone (without the other optimizations) for different batch sizes.
For comparison, the average DeQA energy consumption was 6] (as
shown in Figure 9), which is 3x smaller than the energy consump-
tion of only batching, even if both schemes use a batch size of 16.
Further, batching alone only provides a 2x benefit over the default
DeQA (mem) in terms of latency. DeQA optimizations reduce the
amount of processing, making batching useful in terms of latency
and energy.

9 EVALUATING DeQA OVER ON-DEVICE
USER DATA

In the previous section, we evaluate DeQA over a Wikipedia collec-
tion. We next evaluate DeQA in the context of user data collected
on their devices. Unfortunately, there are no publicly available QA
datasets over on-device data because it is difficult to obtain large
scale data from users due to privacy concerns.

To circumvent the privacy issues, we create our own QA dataset
over two data sources. The first data source is a publicly available

Session 1: On the Horizon

22 . .
3 MReader RNet
c
g 20 19.29 |
(2]
0] 18.
o 18¢ 1712 17.41 1
2 1613 L
a L 15.89 1°- |
> 16 15.44 45 o
o 14.39
S 14 1
(0]
(o]
S 12} 1
[0
>
< 10
1 2 4 8 16
Batch Size

Figure 12: Energy consumption vs batching size on Phone
GPU for MReader and RNet systems on the phone

collection of emails from the employees of Enron [39]. The second
is a cross-app data source that we collect from two users. We collect
on-device content as the users interact with five different apps on
their mobile phones for 1 week. The data however remains within
their devices (not available to anyone else) and the users themselves
create question and answer pairs for evaluation. Because the on-
device QA datasets are much smaller, we do not retrain the QA
model. The model is trained over the SQuAD dataset as before and
is applied to the new datasets.

9.1 On-device QA: Single App

Creating a QA dataset over a email collection The Enron Email
Dataset is a collection of emails from employees of an organization
that has been publicly used for many types of language related
problems such as text classification [39]. We randomly sample a
single user from this collection, and create a set of questions that
can be answered from this user’s emails. The collection consisted
of 3034 emails.

Our procedure to create the QA dataset is similar to the one used
to create the standard SQuAD dataset from the Wikipedia collec-
tion. Specifically, we hired six annotators who each created twenty
question answer pairs yielding a set of 120 questions covering 60
different emails. Each annotator was given ten different emails. For
each email they generated two questions, whose answers would
be an exact phrase within the email. Similar to the SQUAD data
construction, this procedure ensures that the answers are spans
within the emails and that each question is guaranteed to have
a precise answer. The annotators were not given any additional
instruction. To conduct the end-to-end QA experiments, we index
the 3034 emails consisting of 8825 paragraphs for this single user.
Characteristics of the email QA dataset Without any optimiza-
tions, the time to answer a question over this new dataset is not
much smaller compared to that over the Wikipedia collection.
Across the three systems, answering a question takes an average
of 68 seconds on this dataset on the phone. This result is surpris-
ing given that the email collection is orders-of-magnitude smaller
compared to the Wikipedia collection.

The takeaway is that the bottleneck in QA is not the size of
the collection, but the number of paragraphs that need to be pro-
cessed to get the correct answer. We conducted a similar analysis

37

MobiSys 19, June 17-21, 2019, Seoul, Korea

board DeQA (mem) | DeQA
RNet 25.497 s 41s
MReader | 21.395 s 32s
QANet 22.651s 4.6s

Table 5: QA latency with and without DeQA over the QA
dataset defined over the email collection on the TX2 board.

phone DeQA (mem) | DeQA
RNet 72.374 s 4917 s
MReader | 68.932's 4.285 s
QANet 65.583 s 5.461 s

Table 6: QA latency with and without DeQA over the QA
dataset defined over the email collection on the phone.

as Figure 2 to analyze how the answers are distributed across the
top ranked paragraphs. If the answers can always be found in the
top few paragraphs, then the QA model need not process a lot of
documents. However, similar to the SQuAD dataset, the answers
are distributed across the paragraphs in this new dataset. We find
that the accuracy does not improve significantly beyond processing
100 paragraphs. So we restrict the number of paragraphs processed
by the QA model to 100.

Evaluating DeQA over the email dataset Table 5 and Table 6
show the latency benefits of applying DeQA on this email QA
collection. As before, DeQA reduces latency to less than 5 seconds
in most cases on both the board and the phone. On the phone,
DeQA provides an average speedup of 14x and on the board, DeQA
provides an average speedup of 6x with an accuracy drop of 1.3%.
Overall, these results demonstrate that the DeQA optimizations are
effective for question answering over user content.

9.2 On-Device QA: Cross Apps

Collecting data across apps We collect on-device data from two
users as they interact with five different apps for 1 week. We chose
the five apps (a) such that the apps are used by the users frequently,
and (b) the apps contain a good mix of social media, personal, and
informational content. To this end, the five apps we choose are:
BBC News, LinkedIn, Twitter, TripAdvisor, and Notes.

For each app, the users interacted with the apps as they normally

would. For example, scrolling the page to read news/tweets feed,
entering texts for note taking, or simple browsing. We install an
app crawler service to extract the textual content of the screen. We
store the crawled content and index it for use by the search engine
in the QA system.
Creating a QA dataset over the cross-app collection As before,
we ask the two users to randomly sample crawled documents from
this data collection to create 100 questions (10 per app per user)
that can be answered from these documents.

We ask the same two users to also perform answer annotation
because we did not want a third-party looking at the user data.
The answers would be an exact phrase within the document. To
conduct the end-to-end QA experiments, we index the content from
the five apps on each user’s mobile device. In total, we indexed 14524
paragraphs across both the users.

Evaluating DeQA over the cross-app dataset Table 7 shows the
latency benefits of applying DeQA on the cross-app data collection.
Compared to the Wikipedia articles and email dataset, the cross-app

Session 1: On the Horizon

phone DeQA (mem) | DeQA
RNet 54.783 s 3.639 s
MReader | 49.401 s 3.476 s
OANet | 51.132s 4842s

Table 7: QA latency with and without DeQA over the QA
dataset defined over the cross-app data.

Indexing Type time per doc | total docs | total time
scratch index 2.78 ms 8024 docs | 22.307 s
incremental index | 2.61 ms 1000 docs | 2.612's

Table 8: The time to index the cross-app data for the first
time and then incrementally index data on the phone for
one of the two users.

data have much shorter paragraphs. The result is that even without
any latency optimizations, answering a question takes an average
of 51 seconds, compared to an average of 68 and 88 seconds on
the email and Wikipedia datasets, respectively. However, DeQA
reduces latency to less than 5 seconds for an average speedup of
13x with an accuracy drop of 1.5%.

Indexing cross-app data: Table 8 shows the time taken to index
the entire cross-app data on one of the users device. It took about 22
seconds to index all the cross-app data from scratch. Subsequently,
each document takes only 2.61 ms to be indexed incrementally. In
summary, indexing on-device content on the phone incurs negligi-
ble overheads.

10 RELATED WORK

10.1 Question Answering Systems

Question answering has a rich history in the NLP, information
retrieval, and Al communities and has been studied in various
domains (c.f. [20, 30, 40]). Their focus has largely been to improve
the accuracy of various aspects of the QA systems. Recent work in
the systems community has studied the performance of QA systems
(e.g. OpenEphyra) in the context of data center deployments [34].
Qme! [46] is a speech-driven QA system for mobile devices. The
focus of Qme! is to reduce the noise in speech recognition and
perform tight integration between speech recognition and search.
However, Qme! does not run a QA model and instead retrieves
answers from a database. Running a QA model on the phone is
more computationally intensive and is the focus of our work.

Recent advances in deep learning have led to development of
many neural network based architectures for question answer-
ing [23, 25, 55, 56] which have outperformed feature-based meth-
ods. Most of these work focus on extracting an answer, assuming
the answer containing passage is given as input. DrQA [23] is one
of the few end-to-end QA systems that uses deep learning. In this
work, we show how an end-to-end QA system with a deep learning
QA model can be optimized to run on mobile platforms.

We have deliberately designed DeQA to not depend on model
specifics or internals. This allows DeQA optimizations to be com-
patible with new QA models variants. For instance, a recent de-
velopment in NLP is to use large models that use many layers of
transformer blocks (e.g., OpenAl GPT [49] and BERT [27]). Recall
that QANet, a QA model we optimize using DeQA also uses similar
transformer blocks but does not use several layers of the blocks. The
DeQA optimizations are still relevant with these large models, even

38

MobiSys 19, June 17-21, 2019, Seoul, Korea

though these models introduce other significant memory challenges
that require further optimizations. We leave the optimizations of
these large NLP models for future work.

10.2 Optimizing deep learning for Mobile

Deep learning models, in most cases, cannot run as is on mo-
bile devices. Existing optimizations focus on reducing the model
sizes (compression) and parallelizing model computations (decom-
position). These optimizations were designed mainly for DNN
and CNN architectures used in vision and other sensing applica-
tions [19, 31, 41, 42], with large model sizes and compute patterns
that are amenable for parallelization.

Mobile GPUs provide another avenue to optimize the compute
involved in these models. DeepMon [37] and CNNDroid [47] both
show that a mobile GPU can be used to improve the CNN/DNN
execution time, in some cases getting more than a ten-fold speedup
for AlexNet, an image recognition model.

However, RNN optimizations, used by most QA models, are
not well studied in the context of adapting to mobile devices as
CNNs. Some recent studies focus on optimizing RNNs for desktop
GPUs [15]. MobiRNN[21] optimizes small RNN models used for
activity recognition. In this work, we build on these ideas and
deliver QA specific optimizations.

11 CONCLUSIONS

Building a question answering system that operates over local de-
vice content requires running deep learning based QA models on
resource constrained environments. End-to-end QA systems today
have prohibitively large memory requirements and high latencies
making them unusable. Our benchmark study showed that bulk
of processing is spent in encoding documents and the overall la-
tency is mostly due to processing a large number of documents
for each question. Based on these findings, we designed set of la-
tency and memory optimizations that address these inefficiencies
in a way that does not rely on the model structure or the inter-
nals. Our predictive early stopping model automatically identifies
when further processing is unlikely to improve the model’s answer,
thereby reducing the amount of data that is processed by the model.
A further latency optimization pre-computes partial neural repre-
sentations of documents offline and uses them on-demand. Our
memory optimizations reduce the overall in-memory data using
on-demand loading of various components of the QA model backed
by appropriate storage mechanisms. Our evaluation of the resulting
optimized QA system shows that it is both efficient and effective
for resource-constrained mobile devices.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Matthai
Philipose, for their insightful comments and their help towards
improving the paper. We thank Sruti Kumari and Mohit Marwari
for their contributions in implementing the on-device cross-app
data collection and evaluating DeQA on this collection. We thank
Heeyoung Kwon for his help with understanding the QA pipeline.
This work was supported in part by NSF grant CNS-1717973, IIS-
1815358, and VMware.

Session 1: On the Horizon

REFERENCES

[16]

[17]

=
&

[19]

[20

[21]
[22]

(23]

[24]

[25

[26]

[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34

Android app memory restriction.
performance/memory-overview.
Apache lucene. https://lucene.apache.org/.

Cuda. https://developer.nvidia.com/cuda-downloads.

Gameface labs hmec. https://www.tomshardware.com/news/
gameface-labs-standalone-steamvr-headset,37112.html.

Intel sgx. https://software.intel.com/en-us/sgx.

Magic leap vr. https://www.tomshardware.co.uk/magic-leap-tegra- specs-release,
news-58814.html.
Monsoon power
PowerMonitor/.
Nvidia jetson tx2 board. https://developer.nvidia.com/embedded/buy/jetson-tx2.
Oneplus 3. https://www.oneplus.com/3.

Paldb. https://github.com/linkedin/PalDB.

Pytorch. http://pytorch.org/.

Standard score. https://en.wikipedia.org/wiki/Standard_score.

Treelite : model compiler for decision tree ensembles. https://github.com/dmlc/
treelite.

Android. Renderscript. https://developer.android.com/guide/topics/renderscript/
compute.html. accessed 8-April-2017.

J. Appleyard, T. Kocisky, and P. Blunsom. Optimizing Performance of Recurrent
Neural Networks on GPUs. ArXiv e-prints, Apr. 2016.

A. Balasubramanian, N. Balasubramanian, S. J. Huston, D. Metzler, and D.]J.
Wetherall. Findall: a local search engine for mobile phones. In Proceedings of the
8th international conference on Emerging networking experiments and technologies,
pages 277-288. ACM, 2012.

P. Baudis and J. Sedivy. Modeling of the question answering task in the yodaga
system. In CLEF, 2015.

J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1533-1544, 2013.

S. Bhattacharya and N. D. Lane. Sparsification and separation of deep learning
layers for constrained resource inference on wearables. In Proceedings of the
14th ACM Conference on Embedded Network Sensor Systems, SenSys ’16, pages
176-189, New York, NY, USA, 2016. ACM.

E. Brill, S. Dumais, and M. Banko. An analysis of the askmsr question-answering
system. In Proceedings of the ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 257-264. Association for Computational
Linguistics, 2002.

Q. Cao, N. Balasubramanian, and A. Balasubramanian. Mobirnn: Efficient recur-
rent neural network execution on mobile gpu. In EMDL@MobiSys, 2017.

Y. Cao, J. Nejati, M. Wajahat, A. Balasubramanian, and A. Gandhi. Deconstructing
the energy consumption of the mobile page load. Proc. ACM Meas. Anal. Comput.
Syst., 1(1):6:1-6:25, June 2017.

D. Chen, A. Fisch, J. Weston, and A. Bordes. Reading wikipedia to answer open-
domain questions. In ACL, 2017.

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, pages 785-794. ACM, 2016.

C. Clark and M. Gardner. Simple and effective multi-paragraph reading compre-
hension. arXiv preprint arXiv:1710.10723, 2017.

Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu. Attention-over-attention
neural networks for reading comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 593-602, 2017.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805,
2018.

P. Dmitriev, P. Serdyukov, and S. Chernov. Enterprise and desktop search. In
WWW, 2010.

J. L. Elman. Finding structure in time. COGNITIVE SCIENCE, 14(2):179-211, 1990.
D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur, A. Lally,
J. W. Murdock, E. Nyberg, J. Prager, et al. Building watson: An overview of the
deepqa project. Al magazine, 31(3):59-79, 2010.

S. Han, H. Mao, and W.]. Dally. Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. ArXiv
e-prints, Oct. 2015.

S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. ICLR, 2016.

S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy.
Mcdnn: An approximation-based execution framework for deep stream process-
ing under resource constraints. MobiSys ’16, pages 123-136, 2016.

J. Hauswald, M. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana, R. G.
Dreslinski, T. N. Mudge, V. Petrucci, L. Tang, and J. Mars. Sirius: An open end-to-
end voice and vision personal assistant and its implications for future warehouse
scale computers. In ASPLOS, 2015.

https://developer.android.com/topic/

monitor. https://www.msoon.com/LabEquipment/

39

(35]

(36]
(37]

(38]

@
20,

[40

[41]

[42]

[44]

[45

[46]

(48]

[49

[50

[52

(53]

[54]

(56

[57

MobiSys 19, June 17-21, 2019, Seoul, Korea

M. Hu, Y. Peng, Z. Huang, X. Qiu, F. Wei, and M. Zhou. Reinforced mnemonic
reader for machine reading comprehension. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, [JCAI-18, pages 4099-4106.
International Joint Conferences on Artificial Intelligence Organization, 7 2018.
T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel. Chiron: Privacy-
preserving machine learning as a service. CoRR, abs/1803.05961, 2018.

L. N. Huynh, Y. Lee, and R. K. Balan. Deepmon: Mobile gpu-based deep learning
framework for continuous vision applications. MobiSys, 2017.

B. Klimt and Y. Yang. The enron corpus: A new dataset for email classification
research. In Proceedings of the 15th European Conference on Machine Learning,
ECML’04, pages 217-226, Berlin, Heidelberg, 2004. Springer-Verlag.

B. Klimt and Y. Yang. The enron corpus: A new dataset for email classification
research. In European Conference on Machine Learning, pages 217-226. Springer,
2004.

C. C. T. Kwok, O. Etzioni, and D. S. Weld. Scaling question answering to the web.
In ACM Trans. Inf. Syst., 2001.

N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and
F. Kawsar. Deepx: A software accelerator for low-power deep learning infer-
ence on mobile devices. In Proceedings of the 15th International Conference on
Information Processing in Sensor Networks, IPSN 16, 2016.

N.D. Lane, P. Georgiev, and L. Qendro. Deepear: robust smartphone audio sensing
in unconstrained acoustic environments using deep learning. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
pages 283-294. ACM, 2015.

X. Liu, Y. Shen, K. Duh, and J. Gao. Stochastic answer networks for machine
reading comprehension. In Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pages 1694-1704.
Association for Computational Linguistics, 2018.

M. Martinez, A. Roitberg, D. Koester, R. Stiefelhagen, and B. Schauerte. Using
technology developed for autonomous cars to help navigate blind people. In
Computer Vision Workshop (ICCVW), 2017 IEEE International Conference on, pages
1424-1432. IEEE, 2017.

A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston. Key-value
memory networks for directly reading documents. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 1400-1409.
Association for Computational Linguistics, 2016.

T. Mishra and S. Bangalore. Qme!: A speech-based question-answering system on
mobile devices. In Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, HLT
’10, pages 55-63, Stroudsburg, PA, USA, 2010. Association for Computational
Linguistics.

S. S. L. Oskouei, H. Golestani, M. Hashemi, and S. Ghiasi. Cnndroid: Gpu-
accelerated execution of trained deep convolutional neural networks on android.
In ACM Multimedia, 2016.

B. Pan, H. Li, Z. Zhao, B. Cao, D. Cai, and X. He. Memen: multi-layer em-
bedding with memory networks for machine comprehension. arXiv preprint
arXiv:1707.09098, 2017.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language
understanding by generative pre-training. URL https://s3-us-west-2. amazonaws.
com/openai-assets/research-covers/language-unsupervised/language_ understand-
ing_paper. pdf, 2018.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP, 2016.

V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V. Madhyastha. Vroom: Accel-
erating the mobile web with server-aided dependency resolution. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM °17, pages 390-403, New York, NY, USA, 2017. ACM.

S. Salant and J. Berant. Contextualized word representations for reading com-
prehension. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), volume 2, pages 554-559, 2018.

W. Wang, M. Yan, and C. Wu. Multi-granularity hierarchical attention fusion
networks for reading comprehension and question answering. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), volume 1, pages 1705-1714, 2018.

W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou. Gated self-matching networks
for reading comprehension and question answering. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 189-198, 2017.

D. Weissenborn, G. Wiese, and L. Seiffe. Making neural qa as simple as possible
but not simpler. In Proceedings of the 21st Conference on Computational Natural
Language Learning (CoNLL 2017), pages 271-280, 2017.

C. Xiong, V. Zhong, and R. Socher. Dynamic coattention networks for question
answering. CoRR, abs/1611.01604, 2016.

A. W. Yu, D. Dohan, Q. Le, T. Luong, R. Zhao, and K. Chen. Qanet: Combining
local convolution with global self-attention for reading comprehension. In
International Conference on Learning Representations, 2018.

https://developer.android.com/topic/performance/memory-overview
https://developer.android.com/topic/performance/memory-overview
https://lucene.apache.org/
https://developer.nvidia.com/cuda-downloads
https://www.tomshardware.com/news/gameface-labs-standalone-steamvr-headset,37112.html
https://www.tomshardware.com/news/gameface-labs-standalone-steamvr-headset,37112.html
https://software.intel.com/en-us/sgx
https://www.tomshardware.co.uk/magic-leap-tegra-specs-release,news-58814.html
https://www.tomshardware.co.uk/magic-leap-tegra-specs-release,news-58814.html
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
https://developer.nvidia.com/embedded/buy/jetson-tx2
https://www.oneplus.com/3
https://github.com/linkedin/PalDB
http://pytorch.org/
https://en.wikipedia.org/wiki/Standard_score
https://github.com/dmlc/treelite
https://github.com/dmlc/treelite
https://developer.android.com/guide/topics/renderscript/compute.html
https://developer.android.com/guide/topics/renderscript/compute.html

Session 1: On the Horizon MobiSys 19, June 17-21, 2019, Seoul, Korea

[58] S.Yu,S.R.Indurthi, S. Back, and H. Lee. A multi-stage memory augmented neural [59] X. Zeng, K. Cao, and M. Zhang. Mobiledeeppill: A small-footprint mobile deep
network for machine reading comprehension. In Proceedings of the Workshop on learning system for recognizing unconstrained pill images. MobiSys, 2017.
Machine Reading for Question Answering, pages 21-30, 2018.

40

	Abstract
	1 Introduction
	2 Motivation
	3 Architecture of QA models
	3.1 Question Answering Background
	3.2 State-of-the-art QA models
	3.3 Structure of state-of-the-art QA models

	4 Bottlenecks in running QA Models on mobile devices
	4.1 Measurement setup
	4.2 Latency of existing QA systems on mobile
	4.3 Bottlenecks on the mobile device
	4.4 Using existing deep learning optimizations for QA

	5 DeQA Latency Optimizations
	5.1 Dynamic Early Stopping
	5.2 Offline Neural Encoding
	5.3 Other optimizations

	6 DeQA Memory Optimizations
	6.1 Memory requirements of existing QA systems
	6.2 Loading partial index using Lucene
	6.3 Moving from document to paragraph retrieval
	6.4 Replacing in-memory lookup with a key-value database

	7 DeQA Implementation
	8 Evaluations
	8.1 Experimental Setup and Methodology
	8.2 DeQA Latency, Energy, and Accuracy
	8.3 DeQA components
	8.4 Digging deeper into the optimizations

	9 Evaluating DeQA over on-device user data
	9.1 On-device QA: Single App
	9.2 On-Device QA: Cross Apps

	10 Related Work
	10.1 Question Answering Systems
	10.2 Optimizing deep learning for Mobile

	11 Conclusions
	References

