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ABSTRACT
This short paper presents a detailed empirical study of BBR’s per-

formance under different real-world and emulated testbeds across a

range of network operating conditions. Our empirical results help

to identify network conditions under which BBR outperforms, in

terms of goodput, contemporary TCP congestion control algorithms.

We find that BBR is well suited for networks with shallow buffers,

despite its high retransmissions, whereas existing loss-based algo-

rithms are better suited for deep buffers.

To identify the root causes of BBR’s limitations, we carefully

analyze our empirical results. Our analysis reveals that, contrary

to BBR’s design goal, BBR often exhibits large queue sizes. Further,

the regimes where BBR performs well are often the same regimes

where BBR is unfair to competing flows. Finally, we demonstrate the

existence of a loss rate “cliff point” beyond which BBR’s goodput

drops abruptly. Our empirical investigation identifies the likely

culprits in each of these cases as specific design options in BBR’s

source code.
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1 INTRODUCTION
TCP congestion control algorithms have continued to evolve for

more than 30 years [36]. As the internet becomes more and more

complex, researchers have designed different TCP congestion con-

trol algorithms to serve different scenarios. For example, the legacy
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TCP Reno [25] uses an AIMD (additive-increase/multiplicative-

decrease) algorithm to quickly respond to losses while slowly recov-

ering from congestion. TCP Cubic [28] responds more aggressively

to recover from losses — rather than a linear increase, TCP Cubic

grows its congestion window in a cubic manner. Instead of using

packet loss as a congestion signal, TCP Vegas [19] treats increasing

round trip time (RTT) as evidence of congestion. To achieve high

throughput and low latency in data centers, Alizadeh et al. imple-

mented DCTCP [16], which uses explicit congestion notification

(ECN) [35] as the congestion signal to prevent the packet loss from

occurring before the buffer becomes too congested.

A fundamental issue with regards to designing a congestion

control algorithm is: what is the optimal operating point for doing
congestion control? Should we keep sending packets until the buffer

becomes full and use packet loss as the congestion signal (e.g. Reno,

Cubic), or should we treat packet delay as the congestion evidence

(e.g. Vegas, Copa [17, 19]), or should we implement sophisticated

algorithms via learning-based techniques (e.g. PCC, Indigo [24, 38])?

In 1979, Kleinrock showed that the optimal operating point for

the network was when the bandwidth was maximized while min-

imizing the delay [33]. However, it was not until 2016 that this

design point was explicitly used for congestion control. Google’s

BBR (Bandwidth Bottleneck and Round-trip propagation time) algo-

rithm aims to operate at this optimal point by probing the current

bandwidth and delay sequentially in the network [20], as we discuss

in Section 2. BBR has since been employed at Google, and continues

to be actively developed. To avoid bufferbloat [27], BBR regulates its

congestion window size such that the amount of in-flight packets

is a multiple of the bandwidth-delay product (BDP); ideally, this

should result in small buffer sizes.

Despite the rising popularity of BBR, it is not fully clear when
BBR should be employed in practice, that is, when does BBR outper-

form other congestion control algorithms. Prior work has typically

focused on BBR’s fairness properties [34, 37] and its throughput

and queueing delay [30]; we discuss prior work on BBR in detail in

Section 5.

The goal of this short paper is to conduct a comprehensive empir-

ical study to investigate BBR’s performance under different network

conditions and determine when to employ BBR. In doing so, we also

aim to identify the root causes of BBR’s sub-optimal performance.

To this end, we conduct extensive experiments in bothMininet [6]

and real-world networks to analyze the performance of BBR. To

span the range of network operating conditions, we vary the band-

width, RTT, and bottleneck buffer sizes by employing a router
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(a) BBR high level design. (b) State machine.

Figure 1: BBR congestion control algorithm design.

between the client and server machines. For each scenario, we

contrast BBR’s performance with that of Cubic [28], which is the

default TCP variant on Linux and Mac OS, to determine the operat-

ing conditions under which BBR is helpful.

We synthesize the results of our 640 different experiments in

the form of a decision tree highlighting the choice between BBR

and Cubic, to aid practitioners. In general, we find that when the

bottleneck buffer size is much smaller than BDP, BBR can achieve

200% higher goodput than Cubic. However, in the case of deep

buffers, Cubic can improve goodput by 30% compared to BBR; here,

buffer refers to the bottleneck buffer size. While we find that BBR

achieves high goodput in shallow buffers, we observe that BBR’s

packet loss can be several orders of magnitude higher than that of

Cubic when the buffers are shallow.

Our analysis of BBR’s source code reveals that the high packet

loss under shallow buffers is because of BBR’s configuration pa-

rameters that maintain 2× BDP of data in flight. Decreasing the

2× multiplier or increasing the bottleneck buffer size significantly

lowers the packet losses.

Our empirical results also suggest the existence of a “cliff point"

in loss rate for BBR above which BBR’s goodput decreases signif-

icantly. We find that, empirically, this cliff point is at around 20%

loss rate. By modifying the BBR parameters, we find that the cliff

point is largely dictated by the maximum pacinд_дain value BBR

uses when probing for more bandwidth. Interestingly, we find that

BBR exhibits the highest amount of packet retransmissions at this

cliff point.

Finally, we investigate the behavior of BBR in the presence of

other flows. We find that the goodput share of BBR primarily de-

pends on the bottleneck buffer size — BBR utilizes more bandwidth

when the buffers are shallow, despite the high losses, whereas Cubic

does better when the buffers are deep.

2 BACKGROUND ON BBR
Overview of BBR’s design: We illustrate the design of BBR via

Figure 1(a). BBR periodically obtains network information via mea-

surements, including bandwidth, RTT and loss rate. BBR then mod-

els the bandwidth by using a max filter (the maximum value of the

observed bandwidth in the last few RTTs), BtlBw , and the network

delay by using a min filter, RTprop. BBR works according to a state

machine which decides BBR’s next state, as shown in Figure 1(b).

The BtlBw and RTprop values are treated as input to this state

machine.

Based on the current state, BBR calculates the pacinд_дain (a

dynamic gain factor used to scale BtlBw) and cwnd_дain (a dy-

namic gain factor used to scale BDP), and uses these values to

derive pacinд_rate (which controls the inter-packet spacing) and

congestion window size, cwnd , respectively. BBR then regulates

the pacinд_rate between 1.25×BtlBw and 0.75×BtlBw to explore

the achievable bandwidth and to drain the subsequently inflated

queues. Finally, BBR sends cwnd packets at the inter-packet speed

of pacinд_rate .
The algorithm continues iteratively with the next round of net-

work measurements. BBR transitions between different states of

the state machine based on the observed BtlBw , RTprop, amount

of packets in flight, etc. BBR periodically enters the ProbeRTT state

to reduce its cwnd and drain the queue to reset itself.

BBR vs other congestion control algorithms: BBR differs from

other major congestion control algorithms in the following aspects:

1) BBR does not explicitly respond to losses. Reno and Cubic regard
packet loss as a congestion event, and subsequently reduce their

cwnd value by a certain factor. Similarly, the delay-based algorithm

TCP Vegas decreases its cwnd when observing increasing RTT. BBR,

however, does not use explicit congestion signals to reduce cwnd .
Rather, BBR decides the amount of packets to be sent based on

past bandwidth and RTT measurements. Thus, in contrast to other

event-driven algorithms, BBR is feedback driven.

2) BBR uses pacinд_rate as the primary controller.Most conges-

tion control algorithms, like Reno and Cubic, use cwnd to determine

the number of packets in flight. However, cwnd does not directly

control the sending rate, resulting in traffic bursts or an idle net-

work [21]. To solve this issue, BBR uses pacing rate to control the

inter-packet spacing. Implementing the pacing rate in TCP conges-

tion control algorithms is known to have benefits for throughput

and fairness [15].

3) BBR actively avoids network congestion, whereas loss-based
algorithms passively decrease their sending rate in response to con-
gestion. BBR is designed to have low latency and high throughput

by maintaining (typically) 2× BDP packets in flight. One BDP is

budgeted for the network capacity, and the other is to deal with

delayed/aggregated ACKs [20]. BBR thus avoids congestion by lim-

iting the number of packets in flight. By contrast, Reno and Cubic

keep increasing the packets in flight until the bottleneck buffer

is full and a packet loss is detected. This is problematic when the

bottleneck buffer is deep, in which case Reno and Cubic queue up

too many packets in the buffer, causing bufferbloat [27].

While in principle BBR should outperform other TCP variants

due to the above design decisions, a detailed empirical study is

necessary to evaluate the performance of BBR.

3 EXPERIMENTAL SETUP
3.1 Testbeds
We use Mininet [6], LAN, and WAN networks for our experiments.

Mininet is a network emulator which creates a virtual network

running multiple hosts, links and switches on a single machine. For

Mininet or LAN experiments, we use a simple dumbbell topology

as shown in Figure 2(a). The minimum RTT between the various

machines shown in the figure, h1/h2 and h3 in Mininet and LAN

testbed is 40µs.
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(a) Mininet/LAN Testbed (b) WAN Testbed

Figure 2: Testbeds employed in our study.

Figure 2(b) shows our WAN testbed, where two senders are

located at Stony Brook University (New York), and the receiver

is located at Rutgers University (New Jersey). The minimum RTT

between the sender and the receiver is 7ms. The network interfaces

of all hosts have a 1Gbps peak bandwidth.

3.2 Setting the network parameters
We use Linux TC to configure different network conditions for

both real and emulated network links. Specifically, we use TC-

NetEm [29] to set link delay, and TC-tbf [14] to set link bandwidth

and bottleneck buffer size. Note, we do not set network parameters

on end hosts, since doing so can result in a negative interaction

with TCP Small Queues [1, 4]. Instead, in LAN and WAN networks,

we employ TC on a separate Linksys WRT1900ACS router (running

OpenWRT Linux OS) between the end hosts. In Mininet, we set

another node as a router between the end hosts. We investigate

BBR in Linux 4.15, where the TCP layer can handle the pacing

requirements of BBR, thus fq (Fair Queue) [2] is not needed [5].

TC-tbf: Figure 3 shows how Linux TC-tbf is used to limit the

bandwidth. When the application wants to send data, the packets

will first go through the IP stack to obtain headers. Then, the packets

are enqueued to a queue named qdisc (queueing discipline) [11].

When we use TC-tbf to limit the bandwidth to, say rate , a bucket
holding tokens is created. During each second, the system adds rate
tokens into the bucket. The bucket size is pre-configured and can

only hold limited tokens. If the bucket is already full, then the new

tokens being added will be discarded. Each token allows 1 byte of

data to go through the network. As a result, a queued packet of size

L can move to the NIC only if there are L tokens in the bucket. Note

that we can also configure the network buffer size by changing the

qdisc length.

Figure 3: Using TC-tbf to limit network bandwidth.

4 EVALUATION
This section discusses our experimental results on evaluating BBR’s

performance in terms of goodput, packet loss, and fairness using

our above-described testbeds.

Figure 4: Decision tree for employing BBR versus Cubic un-
der different network conditions.

4.1 BBR versus Cubic
Our first evaluation aims to answer a practical question with respect

to BBR – “given a certain network condition, should we employ

BBR tomaximize goodput?" To answer this question, we empirically

study the goodput of BBR and Cubic under 640 different configu-

rations in our LAN testbed. We generate traffic using iPerf3 [12]

in our LAN topology (Figure 2(a)) from h1 to h3. For each network

configuration, we run the iPerf3 experiment 5 times, each for 60

seconds. On the LAN router we configure:

8 RTT values: 5, 10, 25, 50, 75, 100, 150, and 200ms;

8 BW values: 10, 20, 50, 100, 250, 500, 750, and 1000Mbps;

5 Buffer sizes: 0.1, 1, 10, 20, and 50 MB.

The range of our chosen parameters is based on values commonly

employed in modern networks [30, 31].

4.1.1 Decision Tree. We summarize our LAN results using a deci-
sion tree, in Figure 4, which shows whether BBR or Cubic achieves

higher goodput under different network conditions. The decision

tree is generated by using the DecisionTreeClassifier API provided
in Python3 scikit-learn package [13]. The input data consists of the

goodput values of BBR and Cubic from all 640 LAN experiments.

The median and mean classification accuracy for the decision tree

is 81.9% and 81.3%, respectively, under 5-fold cross validation. Note

that we set the TCP read and write memory to the maximum al-

lowable value in Ubuntu 18.10, (2
31
-1 bytes); this is done so that

the data transfer is not limited by small memory sizes. Under the

OS’s default TCP memory sizes, the median and mean classification

accuracy for the decision tree increase to 90.2% and 90.0%. This is

because the Linux default TCP read and write memory sizes are

usually quite small (usually 4MB to 6MB), which results in lower

variation in bandwidth, thus reducing prediction outliers.

For each node in the tree in Figure 4, except for the leaf nodes, the

first row shows the condition; nodes to the left are True and nodes

to the right are False with respect to the condition. The second row

shows how many cases (out of the 75% training data) fall under this

node. The third row shows the number of cases that are classified

as BBR or Cubic, based on the condition in the first row. Finally, the

last row indicates the general decision for this node. If the node’s

color is orange, the decision is BBR; if the node’s color is blue,

then the decision is Cubic. The intensity of the color is determined

using the Gini impurity, and indicates how confident we are in our

decision. The leaf nodes provide the final classification output. To

leverage the tree for a given network condition, we start at the root
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(a) GpGainbbrcubic , buffer=100KB (b) GpGainbbrcubic , buffer=10MB (c) BBR’s # retransmits, buffer=100KB (d) Cubic’s # retransmits, buffer=100KB

Figure 5: Analysis of BBR and Cubic in terms of improvement in goodput and number of retransmissions under shallow and
deep buffers for the LAN setup.

and traverse until we reach a leaf node; the decision in the leaf node

is the predicted optimal choice (BBR versus Cubic).

The decision tree can be reasoned as follows. The left branch

indicates the region where BDP is small and buffer is large, under

which Cubic results in higher goodput. The right branch indicates

the region where BDP is large and buffer size is small, under which

BBR has higher goodput. The key to explaining these findings is

that BBR maintains 2 × BDP number of packets in flight, and so

the BDP number of packets are queued in the buffer (while the

remaining BDP are on the wire). Now, if the buffer size is larger

than BDP , which is the case in most of the left branch, then BBR is

unable to fully utilize the buffer, resulting in likely inferior goodput.

When the buffer size is small, both BBR and Cubic experience losses.

However, Cubic responds to losses by significantly shrinking its

cwnd , whereas BBR does not directly respond to the loss, resulting

in higher goodput.

We also generated a decision tree using Mininet experiments.

Results are qualitatively similar, with the Mininet-based decision

tree providing an accuracy of about 90%.

4.1.2 Deconstructing the decision tree results. To further analyze

the decision tree results based on the LAN experiments, we focus

on two metrics: goodput and packet loss. Goodput characterizes

how well the congestion control algorithm utilizes the network,

while packet loss indicates the extent of network resource wastage

incurred by the algorithm.

Goodput: We use the following metric to evaluate BBR’s goodput

percentage gain over Cubic:

GpGainbbrcubic =
дoodput |BBR − дoodput |Cubic

дoodput |Cubic
× 100 (1)

We use heatmaps to visualizeGpGainbbrcubic for different network

settings — for each metric, we show one heatmap for shallow buffer

(100KB) and one for deep buffer (10MB). Note that we refer to 10MB

as “deep” buffer since it is larger than most of the BDP values in

our experiments. For example, a 500Mbps bandwidth and 100ms

RTT results in 6.25MB BDP value, which is smaller than 10MB.

In each heatmap, we show the metric value under different RTT

and bandwidth settings. Red shaded regions and positive values

indicate that BBR outperforms Cubic, whereas blue shaded regions

and negative values indicate that Cubic outperforms BBR.

Figure 5(a) showsGpGainbbrcubic under the shallow buffer (100KB).

We observe that BBR outperforms Cubic when either bandwidth

or RTT is high, i.e. the BDP is high. On the other hand, for a deep

buffer (10MB), Figure 5(b) shows that Cubic has higher goodput

except for very large bandwidth and RTT values. However, Cu-

bic’s goodput gain in deep buffers is not as high as BBR’s gain in

shallow buffers. For example, under 100KB buffer size, 200ms RTT,

and 500Mbps bandwidth, Cubic’s average goodput is 179.6Mbps,

while BBR has a significantly higher average goodput of 386.0Mbps

(115% improvement). However, for a 10MB buffer, Cubic only sees

a maximum goodput improvement of 34%. We also tried a 50MB

buffer size, but the results were similar to that for 10MB buffer size.

Loss: Although BBR sees significantly higher goodput values in

shallow buffers, there is a caveat here – high number of losses.

Figures 5(c) and 5(d) show the number of packet retransmissions

for both BBR and Cubic in our LAN experiments under the 100KB

bottleneck buffer size and different bandwidth and RTT values;

note that retransmissions are initiated after a loss is detected [23].

We see that BBR often incurs 10×more retransmissions than Cubic.

This is largely because BBR sets cwnd_дain to 2 most of the time,

thus requiring a buffer size of at least BDP to queue its outstanding

requests in flight; when the buffer size is smaller than BDP, BBR will

continually have losses. On the other hand, although Cubic also hits

the buffer capacity for a shallow buffer, it responds by lowering its

cwnd , thus avoiding continued losses. In terms of losses, for 100KB

buffer size, the average loss percentage for BBR and Cubic is 10.1%

and 0.9%, respectively. For 10MB buffer size, the corresponding loss

percentage for BBR and Cubic is 0.8% and 1.3%, respectively.

When the bottleneck buffer size increases, we find that the num-

ber of retransmissions decreases significantly for both BBR and

Cubic. For example, in our 25ms RTT and 500Mbps bandwidth

LAN experiment, when we increase the bottleneck buffer size from

100KB to 10MB, BBR and Cubic’s retransmissions decrease from

235798 to 0 and 1649 to 471, respectively. To better understand

this non-trivial loss behavior, we further analyze the relationship

between goodput and losses in the next subsection.

Latency: To investigate TCP latency, we now consider finite flow

sizes. Specifically, we use iPerf3 to generate 10MB and 100MB flows

under the same 640 network configurations as for our previous set

of experiments in the LAN testbed. We use the following metric to

evaluate BBR’s latency improvement percentage over Cubic:

LatDecbbrcubic =
latency |Cubic − latency |BBR

latency |Cubic
× 100 (2)
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(a) LatDecbbrcubic , buffer=100KB (b) LatDecbbrcubic , buffer=10MB

Figure 6: BBR’s latency decrease compared to Cubic under
shallow and deep buffers for a finite flow size (100MB).

Our latency results for 100MB flows are shown in Figure 6, which

agrees with with our goodput results in Figure 5. We observe in

Figure 6(a) that in the shallow buffer case, BBR typically has lower

latency. For a deep buffer, Figure 6(b) shows that Cubic has lower

latency when the BDP is small. We also experimented with 10MB

flows, and found that BBR has lower latency in almost all cases.

4.2 BBR’s goodput vs packet losses
In the current Linux implementation, BBR does not actively react

to packet losses. However, we observe in our experiments that BBR

exhibits an abrupt drop in goodput when the loss rate becomes

very high, about 20% in our case. This suggests a “cliff point" in
loss rates beyond which BBR inadvertently reacts to losses.

On further analysis, we find that the cliff point has a close re-

lationship with BBR’s pacinд_rate parameter that determines its

probing capabilities (see Section 2). If the packet loss probability is

p, then during bandwidth probing, BBR paces at pacinд_rate ×BW .

However, due to losses, its effective pacing rate is pacinд_rate ×
BW × (1 − p). Thus, if this value is less than the bandwidth, BBR

will not probe for additional capacity, and will in fact infer a lower

capacity due to losses. We determine the cliff point by solving:

pacinд_дain × BW × (1 − p) = BW (3)

Consequently, the cliff point is p = 1− 1/pacinд_дain. In current

implementations, the maximum pacinд_дain is 1.25, so the cliff

point should be at p = 0.2, or 20% loss rate.

Validation of cliff points:We validate our above analysis by vary-

ing the maximum pacinд_дain value in BBR’s source code, and con-

ducting experiments in both our WAN and Mininet testbeds. We

experiment with two differentpacinд_дain values, in addition to the
default value of 1.25: pacinд_дain = 1.1, denoted as BBR_1.1, and
pacinд_дain = 1.5, denoted as BBR_1.5. Via Eq. (3), we expect the
cliff point of BBR_1.1 and BBR_1.5 to be at 9% and 33%, respectively.

Figure 7 shows how different TCP algorithms react to packet

losses in the Mininet testbed (100Mbps bandwidth and 25ms RTT).

We vary loss rate from 0 to 50% using TC-NetEm to emulate lossy

networks; TC-NetEm introduces random losses, which are common

in WiFi and RED routers [26]. For each loss rate, we run iPerf3

experiments for 60s with different congestion control algorithms.

Figure 7(a) shows how goodput is affected by loss rates. We see

that for loss-based algorithms, Reno and Cubic, goodput decreases

significantly even under moderate loss rates since they proactively

reduce cwnd when encountering losses. On the other hand, BBR

and BBR_1.1 exhibit a drop in goodput around 20% and 9% loss

rates respectively, validating our prior cliff point analysis. However,
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Figure 7: Mininet: 100Mbps BW, 25ms RTT, 10MB buffer.
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(b) WAN results.

Figure 8: BBR and Cubic’s bandwidth share under 1Gbps BW, 20ms
RTT, and different buffer sizes.

BBR_1.5 exhibits its cliff point much before the predicted 33% loss

rate. This is because BBR considers a > 20% loss rate a signal of

policing [8], and so uses the long-term average bandwidth instead

of updating its maximum bandwidth estimate BtlBw .

Figure 7(b) shows the number of retransmissions under different

loss rates. We see that BBR reaches its peak retransmissions around

the loss rate cliff point. This is because, before this cliff point, the

BBR goodput is stable but the loss rate is increasing, resulting in

increasing number of retransmits. However, after the cliff point

is reached, BBR’s goodput decreases, resulting in fewer packets

sent and, subsequently, fewer retransmissions. We also conducted

experiments in WAN to verify this behavior. We obtained similar

results as Figure 7(b), thus confirming our cliff point analysis.

4.3 Analyzing BBR’s fairness
Given BBR’s aggressive behavior, evidenced by its high retransmis-

sions, we now investigate the fairness of BBR when it coexists with

other flows in our Mininet and WAN testbeds.

Mininet results: For our Mininet testbed setup for fairness (Fig-

ure 2(a)), nodes h1 and h2 send iPerf3 traffic to h3 using BBR and

Cubic, respectively. On the link from the router to h3, we add a

20ms network delay and vary the buffer size between 10KB and

100MB. Under each buffer size, the iPerf3 experiment lasts for 60s.

Figure 8(a) shows the results of our Mininet experiments. We see

that the bandwidth share of BBR and Cubic depends on the bottle-

neck buffer size. For a small buffer size (10KB), BBR utilizes 94% of

the network goodput value. When the buffer size is large (10MB),

Cubic utilizes 3×more bandwidth than BBR. Under moderate buffer

sizes (∼ 5MB), BBR and Cubic evenly share the bandwidth.

In terms of retransmissions, we find that BBR has a high retrans-

mission rate when coexisting with Cubic flows in shallow buffers.

Table 1 shows the number of retransmissions for BBR and Cubic

under different buffer sizes in our Mininet experiments. Clearly,

BBR has orders of magnitude higher retransmits than Cubic for

small buffer sizes. For example, under 100KB buffer size, BBR has
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Buffer (bytes) 1e4 1e5 1e6 5e6 1e6 5e7 1e8

BBR Retr# 26746 305029 68741 1324 204 0 0

Cubic Retr# 908 1398 3987 1145 794 7 16

Table 1: Number of retransmissions for BBR and Cubic for
different buffer sizes when they co-exist under the 1Gbps
bandwidth and 20ms RTT Mininet network.

200× more retransmits than Cubic. In deep buffers, BBR’s retrans-

missions drops to zero since its packets in flight (cwnd) is now
much smaller than the buffer capacity.

WAN results:We also conduct fairness experiments in our WAN

network. For configuring the network conditions, we apply the

same Mininet parameters to our WAN testbed. Our WAN results in

Figure 8(b) show a different behavior – even at high buffer sizes,

Cubic’s bandwidth share does not increase, unlike that in Figure 8(a).

This results suggests the existence of a shallow buffer on the WAN

between our router and the receiver h3. In Figure 8(b), the goodput

of BBR and Cubic stabilizes when our router buffer size reaches

20KB; this indicates that the bottleneck buffer in the wild in our

WAN setup is around 20KB. In terms of retransmissions, while we

also see a large number of retransmits for BBR in shallow buffers,

we find that BBR’s retransmits stabilize at around 500 packets/min

as we increase our router buffer size beyond 20KB; this further

confirms the 20KB bottleneck buffer in the wild for our WAN setup.

Reason for using Mininet: While we show similar results in

Section 4.1 for the LAN and Mininet testbeds, Mininet is more

flexible than the LAN testbed in certain scenarios. In Section 4.3,

we use Mininet to create a star topology for the fairness experiment

– a router connecting 3 nodes. This was not possible in our LAN

testbed given we only have two servers connected to a router. Also,

we use Mininet in Section 4.2 and Section 4.3 due to its convenience

and scalability to validate/reinforce our in-the-wild WAN results.

5 RELATEDWORK
BBR’s design was first published in a 2016 ACM article [20]. Since

2016, several BBR updates have been given at IETF conferences [7,

9, 21], in addition to internet drafts [3, 22].

Most of the prior work on evaluating the performance of BBR

has focused on BBR’s fairness. Hock et al. [30] study how BBR

coexists with Cubic under shallow and deep buffers. They find that

BBR gets a bigger share of the bandwidth in small buffers while

Cubic gets a larger share in deep buffers. Ma et al. [34] show that the

persistent queue that develops on the bottleneck buffer contributes

to BBR’s unfairness. However, these works either experiment with

very few buffer sizes or only using a single testbed. Our paper not

only analyzes BBR’s fairness for a range of buffer sizes (10KB –

100MB) under multiple testbeds, but also highlights the non-trivial

fairness behavior in our WAN setting (see Section 4.3).

The high loss rate under BBR has been discussed in some recent

papers [30, 32, 37], but these works do not investigate the reasons

(such as the cliff point, see Section 4.2) behind this observation.

There have also been some works that investigate BBR’s perfor-

mance for specific scenarios. Zhong et al. [39] investigate BBR in a

mobile network, and analyze the impact of delayed ACKs on BBR’s

performance. Atxutegi et al. [18] study BBR’s performance in live

mobile networks, and contrast it with TCP NewReno and Cubic.

Our work focuses on BBR performance in different wired settings,

including LAN and WAN, in addition to Mininet.

6 LIMITATIONS AND FUTUREWORK
We now discuss the limitations of our study. First, all of our experi-

mental testbeds, including LAN, Mininet, and WAN, use a simple

dumbbell topology in order to easily control the bottleneck buffer

size. However, the Internet consists of more complicated networks.

For example, BBR has been used in Google’s B4 network as well as

in Youtube video servers [20]. We plan to extend our study to such

real-world scenarios as part of the future work.

Second, our experiments thus far consider at most two concur-

rent TCP flows. Also, since the LAN and the Mininet testbeds are

fully under our control, we deliberately eliminate the irrelevant

(background) traffic in our experiments to focus on the fairness

performance comparison between BBR and Cubic. However, in real

networks, temporary flows can enter and leave the network at dif-

ferent times, which might affect the results. We plan to investigate

the impact of more competing flows in our future work.

Third, this paper primarily focuses on empirical measurements.

We have not investigated how we can use our empirical findings

to optimize the performance of BBR. In our ongoing work, we are

investigating the design flaws of BBR with the eventual goal of

enhancing the design of BBR to improve its performance. Specifi-

cally, we are working on mitigating BBR’s high retransmission and

unfairness issues.

Finally, the key issues revealed by our study, such as cliff points,

high retransmissions, and unfairness, are inherent in the current

version of BBR. It is not entirely obvious whether or not these

issues will persist in future versions of BBR, though there is some

online discussion [9, 10] about addressing unfairness in subsequent

versions of BBR. Nonetheless, the empirical findings and root cause

analysis presented in this paper can help the community to identify

and solve performance issues as BBR continues to evolve.

7 CONCLUSION
Despite the excitement around BBR, there is a dearth of studies that

evaluate the performance of BBR on multiple real-world testbeds

and across a range of parameter settings, especially studies that

investigate why BBR performs the way it does. This paper conducts

over 600 experiments under both emulated and real-world testbeds,

and analyzes the network conditions under which BBR outperforms

contemporary algorithms. Our analysis reveals that it is the relative

difference between the bottleneck buffer size and BDP that typically

dictates when BBR performs well. In fact, this finding also extends

to BBR’s unfair behavior when it coexists with Cubic; however,

in such cases, we find that when BBR performs well, it can be

very unfair to competing flows. In addition, our study reveals the

existence of a “cliff point” in loss rate, beyond which BBR’s goodput

drops abruptly. Our analysis reveals that thepacinд_дain parameter

in BBR is partly to blame for this behavior.
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