
Demo: UIWear: Easily Adapting User Interfaces for Wearable
Devices

Jian Xu∗
Stony Brook University

jianxu1@cs.stonybrook.edu

Qingqing Cao∗
Stony Brook University
qicao@cs.stonybrook.edu

Aruna Balasubramanian
Stony Brook University

arunab@cs.stonybrook.edu

Donald E. Porter
The University of North Carolina at Chapel Hill

porter@cs.unc.edu

ABSTRACT
Wearable devices, such as smart watches, offer exciting new oppor-
tunities for users to interact with their applications. The current
state of the art for wearable devices is for a developer to write
a custom companion app, which is a variant of the smartphone
app, tailored to the wearable form factor. A developer puts a non-
trivial amount of effort to write these companion apps and the
programming model does not scale to an increasing diversity of
form factors.

In this demo, we show aworking prototype of our systemUIWear
that allows a developer to easily extend a smartphone application
to other wearable interfaces. Our system, UIWear, extracts the
application GUI as a UI tree, which preserves the semantics of the
GUI. The developer (or the user) only writes a metaprogram to
encode the GUI design for the wearable device; no effort is needed
beyond the design phase. UIWear executes the metaprogram by
performing all the underlying tasks to virtualize the application
GUI, adapt it, and recreate it on the wearable. A metaprogram can
create the same functionality as existing companion apps with an
order-of-magnitude less programming effort.

1 INTRODUCTION
Wearable computing devices are a major growth sector for comput-
ing, and represent a step torward practical, ubiquitous computing.
Wearable devices decouple the benefits of computer assistance from
sitting at a computer or even holding a bulky phone. Wearable apps
have applications in diverse areas, including healthcare, personal
assistance, navigation, personal security, and many more. For exam-
ple, GPS heads-up display helps skiers navigate a difficult slope [4].
Similarly, the Spotify smartwatch app allows the user to control the
music easily, freeing the user’s hands from repeatedly taking out
the phone.

A prevailing programming model for wearable devices is to
create companion apps that act as a companion for apps on the
more powerful mobile phone. A companion app extends a subset of
∗Primary authors with equal contribution.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiCom ’17, October 16–20, 2017, Snowbird, UT, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4916-1/17/10.
https://doi.org/10.1145/3117811.3124769

the smartphone app’s graphical user interface (GUI) to the wearable
device, adapting the GUI for a different form factor. For example, the
Spotify companion app (see Figure 1) on the user’s watch exports a
view of the Spotify smartphone app to the watch, and events such
as pausing the song are synchronized with the smartphone app.

Unfortunately, the programming model for wearable devices
simply does not scale. For example, the Spotify app needs to be
extended to the smartglass, a different companion app is required.
These companion apps can be over a thousand lines of code (and
tens of thousands of lines of code including libraries), and require
the original app developer to manage the UI, emulate user interac-
tion, and write an ad hoc RPC protocol to synchronize the wearable
and the phone application [11]. Because of the significant developer
effort required to create a companion app, only a small fraction of
smartphone apps have companion apps. Even popular apps such
as Facebook do not have a companion app. Worse yet, without
source code, third-party developers cannot design new companion
apps for an existing smartphone app nor adjust a companion app
to better suit their needs.

In this demo, we present a different programming model for
wearable devices, where the developer writes the smartphone ap-
plication once, and writes a simple meta program to specify how
the application should be extended to a given form factor. Our sys-
tem, UIWear, automatically creates companion apps, that we call
UICompanion apps, for different form factors based on the meta
program. The developer effort in writing the meta program is an
order-of-magnitude lower than writing the companion app. UIWear
is transparent to the application, does not require source code or
changes to the original application, can re-tailor the GUI to suit the
wearable interface, and is well-suited for mobile and wearables.

The overarching principle of UIWear is to abstract application
management from application design. The human designer (devel-
oper or end-user) only specifies what parts of the smartphone GUI
are mapped to the wearable device and how the GUI is re-tailored,
using a simple metaprogram. Writing a metaprogram requires sub-
stantially lower programming effort than writing a full-fledged
companion app, as the developer needs only specify the interface
design.

UIWear’s UI virtualization architecture manages all other aspects
of extending the app to the wearable device. UIWear abstracts a
logical model of the GUI as a loose set of UI elements, and uses
this abstraction to re-tailor and render the GUI on the wearable.
UIWear also performs all synchronization at the GUI layer using the
logical GUI model. All user interactions on the wearable device are

https://doi.org/10.1145/3117811.3124769

Spotify Smartwatch
Companion App

Spotify Smartphone
App

Figure 1: The Spotify smartphone and the corresponding
smartwatch companion app. A subset of the smartphone
GUI (markedwithin the red box) is re-tailored for the watch.

captured by the GUI abstraction and sent to the phone. The phone
emulates the user interaction as though it was a local event, and
the resulting update to the phone GUI is mirrored on the wearable.

One essential contribution of UIWear is identifying and extract-
ing a logical model of the GUI. UIWear uses the UI tree abstraction,
which is commonly used across operating systems to represent
the GUI as individual UI elements and their relationships [1, 2].
UIWear essentially splices the UI tree, tailors it according to the
metaprogram, and compiles it into the UICompanion app. A key
contribution of UIWear is in extracting the UI tree from the appli-
cations transparently.

Another key challenge is in synchronizing at the GUI layer.
Smartphones only allow a single active GUI at a given time; in
fact, the graphics stack of background apps is destroyed. The conse-
quence is that the wearable app can only synchronize as long as the
phone app is in the foreground. We observe that, while maintaining
the full graphics stack of each background application is power
consuming, the logical GUI model (in our case the UI tree) can be
kept active even for background apps with minimal effect on power.
In UIWear, we modify the operating system to keep the UI tree
of a background application active. This simple change allows us
to multiplex I/O events to and from background applications with
minimal effect on power.

There has been related work both in the systems and the human-
computer interaction (HCI) communities for designing cross-device
applications. However, related systems either only work in homoge-
nous environments that do not require UI re-tailoring [7, 8], or only
work for specific applications and devices while supporting UI
tailoring [9, 10, 12]. UIWear combines the advantages of the two
approaches.

2 UIWEAR
Companion app Background. Companion apps are a common

programming paradigm used by wearable operating systems and
vendors including AndroidWear, Apple, Tizen, Pebble, and the now
defunct Google glass. A companion app is a GUI projection of the
original smartphone app, where parts of the smartphone UI are
re-tailored and displayed on the wearable.

Figure 1 shows the Spotify companion app from the AndroidWear
playstore [6] for smartwatches. The companion app exports a view
of the Spotify smartphone app to the watch, and events such as
pausing the song are synchronized with the smartphone.

UIWear Architecture. The UIWear architecture has two stages:
compile time and runtime, as shown in Figures 2(a) and (b). At com-
pile time, the human designer writes a metaprogram and UIWear
compiles this to the UICompanion app. The metaprogram is the
only step that requires a human-in-the-loop. The developer writes
a separate metaprogram for each wearable interface such as watch
and a glass. The metaprogram includes decisions about what parts
of the UI are to appear on the wearable device and how the UI is
re-tailored.

App Meta	
Program1	

								
								UIWear	
								Compiler	

UI tree

UICompanion App

(a) UIWear Compiler
and Metaprogram:
UIWear compiles the
metaprogram speci-
fication to create the
UICompanion app.

UIWear	
phone	proxy	

UIWear	wearable	
Proxy	

Smartphone

Wearable Interface 1

 UICompanion App1
App1 App2

UIWear	wearable	
Proxy	

Wearable Interface 2

UICompanion App2

(b) At UIWear Runtime: The
UICompanion app on the
wearable device synchronizes
state with the smartphone
app to relay user interactions
and get UI updates.

Figure 2: UIWear Architecture

The UIWear compiler compiles the metaprogram to the UICom-
panion app and ships the app to the wearable device. UIWear ex-
tracts the UI tree to abstract and re-tailor the GUI. A natural point
at which to extract the UI tree is at the accessibility and UI automa-
tion interface. Current accessibility interfaces are designed only
for extracting textual content of the GUI, primarily for applications
for the visually impaired that may not require graphical content.
UIWear augments this existing technique so that the complete UI
tree, including text and visual data are extracted.

At run time, UIWear synchronizes the UI states of the wearable
app and the corresponding phone app. UIWear’s synchronization
protocol relays input events from the wearable device to the UIWear
phone proxy, which emulates the user input on the phone. The
resulting GUI update is relayed to the wearable device using the
UI tree abstraction. This synchronization requires no support from
the phone application, unlike existing companion apps that need
to write a custom remote procedure call.

Implementation. We implement UIWear on the Android ecosys-
tem: Android phone OS, AndroidWear smartwatch OS, and the
Sony SmartEyeGlass that runs over a version of Android [5].

From the end-user’s perspective, an Android application is made
up ofmultiple “windows” or activities. The designerwrites ametapro-
gram for each application window to be mapped to the wearable,
and UIWear compiles the metaprograms and bundles them into
a single UICompanion app. UIWear uses the standard Android
toolchain to create the UICompanion application. The application
consists of the source file, the AndroidManifest file, the layout, and

a set of resources that are created programmatically. We create
templates for the metaprogram using FreeMarker [3].

We implement the UIWear phone proxy as a client to the acces-
sibility service on Android, and the wearable proxy as a service
on the wearable device. The phone and wearable proxies together
contain 5,300 lines of code. The phone proxy keeps track of pref-
erence files and wearable UI tree for different applications as well
as different windows of the same application. The UIWear watch
and phone proxy exchange information over the Google Messag-
ing Service (GMS). GMS encapsulates the data and performs the
low-level communication tasks, and can use Bluetooth or WiFi.

To multiplex I/O between several UICompanion apps and back-
ground apps, UIWear modifies Android to allow the graphic stack
to sleep, but keep the intermediate UI representation active.

3 DEMO DETAILS
In this demonstration, we will show how the UICompanion app
is generated by UIWear based on the metaprogram specification.
We will also show the corresponding developer-written companion
apps downloaded from AndroidWear Marketplace. The audience
can interact with both versions of the app and compare the look-and-
feel and functionality between two versions. We will also show how
UIWear can create wearable applications for smartphone apps for
which no wearable application currently exists. Specifically, we will
demonstrate the companion app creation for Facebook messenger
and Yahoo Mail, as well as companion app creation on Smartglasses.
Interested audience members will be invited to write their own
metaprogram for extending smartphone apps to wearables.

The demonstrations will be performed on a Nexus 5 smartphone
running a customized Android Marshmallow 6.0.1 OS, a smart-
watch running AndroidWear 1.5, the Sony SmartEyeglass, and a
laptop, all of which will be bought to the venue by the authors. The
demonstration requires a desk, power outlets, and WiFi. The demo
setup will take less than 30 minutes.

REFERENCES
[1] Android View Hierarchy. http://developer.android.com/guide/topics/ui/overview.

html.
[2] Apple View Hierarchy. https://developer.apple.com/library/ios/documentation/

General/Conceptual/Devpedia-CocoaApp/View%20Hierarchy.html.
[3] Freemarker. http://freemarker.org/.
[4] GPS Heads Up Display. http://www.reconinstruments.com/products/snow2/.
[5] Sony SmartEyeGlass SDK. https://developer.sony.com/develop/wearables/

smarteyeglass-sdk/.
[6] Google Android Wear Market. https://play.google.com/store/apps/category/

ANDROID_WEAR?hl=en.
[7] J. Andrus, A. Van’t Hof, N. AlDuaij, C. Dall, N. Viennot, and J. Nieh. Cider:

Native execution of ios apps on android. In Proceedings of the ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 367–382, 2014.

[8] Apportable. http://www.apportable.com/.
[9] S. M. Billah, D. E. Porter, and I. V. Ramakrishnan. Sinter: Low-bandwidth remote

access for the visually-impaired. In Proceedings of the ACM European Conference
on Computer Systems (EuroSys), 2016.

[10] J. Nichols, Z. Hua, and J. Barton. Highlight: a system for creating and deploying
mobile web applications. In Proceedings of the 21st annual ACM symposium on
User interface software and technology, pages 249–258. ACM, 2008.

[11] J. Xu, Q. Cao, A. Prakash, A. Balasubramanian, and D. E. Porter. Uiwear: Easily
adapting user interfaces for wearable devices. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, MobiCom ’18,
2018.

[12] J. Yang and D. Wigdor. Panelrama: Enabling easy specification of cross-device
web applications. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’14, pages 2783–2792, New York, NY, USA, 2014. ACM.

http://developer.android.com/guide/topics/ui/overview.html
http://developer.android.com/guide/topics/ui/overview.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/Devpedia-CocoaApp/View%20Hierarchy.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/Devpedia-CocoaApp/View%20Hierarchy.html
http://freemarker.org/
http://www.reconinstruments.com/products/snow2/
https://developer.sony.com/develop/wearables/smarteyeglass-sdk/
https://developer.sony.com/develop/wearables/smarteyeglass-sdk/
https://play.google.com/store/apps/category/ANDROID_WEAR?hl=en
https://play.google.com/store/apps/category/ANDROID_WEAR?hl=en
http://www.apportable.com/

	Abstract
	1 Introduction
	2 UIWear
	3 Demo details
	References

