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Abstract—Although the cryptocurrency hype over the past
year may be seen by some as a benign social fad, to the Web
community it is the center point for a series of ethically dubious
ransomware attacks. Browser based cryptomining, or cryptojack-
ing has gained widespread attention. Cryptojacking consists of
Web servers delivering cryptocurrency mining scripts to clients,
and using the client resources to play part in a distributed
coin mining scheme. Although Web server operators defend the
ethics of their involvement by quoting mining as a substitute for
advertisement revenue, these scripts can hog massive amounts of
client-side resources and can be delivered without client consent,
presenting a high potential for abuse. Regardless of how ethical
these campaigns are, what remains constant is the need for their
detection. While there has been an array of work in defending
against such cryptojacking campaigns, these defenses remain
quite preliminary. We present CoinSpy, an entirely in-browser
tool built using deep learning techniques for the detection of
cryptomining activity within Web pages. A key challenge is that
there is limited visibility into the client resource usage from
within the browser sandbox. CoinSpy extracts several signals
from information available from the browser and combines them
using deep learning to build a powerful cryptojacking classifier.
We argue why CoinSpy is the most robust defense against current
and future cryptojacking attacks as compared to recent work,
and show that it can detect various cryptojacking campaigns
with 97% accuracy.

I. INTRODUCTION
The Web is fast becoming a popular platform for cryptocur-

rency mining [37], [33], a process called “drive-by-mining”
or cryptojacking. Cryptojackers exploit resources at the client
device when the client is browsing the Web. When a client
accesses a cryptojacking site, a specialized script is down-
loaded to the client computer, often without their knowledge
or consent. This script runs in their browser in the background,
exploiting their compute resources. There has been an 8500%
increase in cryptojacking Web pages [40] and 0.06 - 0.08% of
the Alexa Top 1 Million sites have been shown to be delivering
cryptojacking scripts [21], [37]. This is largely made possible
by the popularization of new families of cryptocurrency (e.g.,
Monero coin [25]) that enable mining for coins without custom
hardware.

Detecting cryptojacking is critical to enable a positive and
safe Web experience. Studies show that cryptojacking causes
severe performance degradation [39]. Parties complicit to cryp-
tojacking can include APIs for obtaining user consent [24] but

these aren’t often utilized in practice, making mining an ethical
gray area [14], [39].

To date, there has been much work highlighting the pres-
ence, economic impact, and obtrusiveness, of Web mining [14],
[37], [38]. There has also been an influx of recent works that
focus on extracting features, both static and dynamic, of miners
to build models for determining cryptomining behavior on Web
pages [21], [16], [23].

Here, we present CoinSpy, a tool that focuses on the latter
space of cryptojacking detection. To differentiate and improve
this space, we design CoinSpy with two main goals.

Firstly, making CoinSpy a future-proof detector is our
first-class concern. While many existing detection mechanisms
offer well posed means for mining detection in the current
landscape, this space remains quite volatile; the erratic nature
of the pricing of Web cryptocurrencies has lead to bow-outs [9]
from even major players in the space, such as CoinHive [24]
which closed operations this past March of 2019. To enable
future-proof detection, we learn a model for detection based
entirely on behavioral features that learn the actual effects of
mining on the client resources. Behavioral features have been
shown to provide better generalization in the realm of mal-
ware detection, across a verity of fields [4], [12]. Behavioral
features are robust to evasions [16] that are known to exist
for static signatures, such as blacklisting, obtained from the
these miners. We additionally introduce behavioral variations
into the miners in which we train so that the detector will
scale to the many different ways which miners are used in the
wild. Finally, our model can be incrementally updated given
that the volatility of this space may produce new miners and
hence new behavioral effects on the client resources.

Secondly, we design CoinSpy to operate end-to-end from
within the browser. An in-browser tool is critical to the
deployment of such a system—it allows for in-browser defense
upon detection, such as stopping a specific JavaScript, and it
exhibits a higher level of trust for users [28]. Further, extension
permission models [15] can assure users that we do not send
any of their private data used for detection to the external
network. Finally access to well known platforms such as the
Chrome Web store ensure our defense can be easily accessed
and kept up to date for users, helping its future-proof design.

CoinSpy analyzes the compute, network, and memory
behaviors caused by cryptojackers running within client
browsers. Our studies focus on both the individual effects of
cryptojacking on these resources as well as their correlated
utilizations. For example, mining requires solving a Proof-
of-Work (or PoW) algorithm, a computationally intensive
algorithm that heavily consumes compute resources. The CPU
consumption exists in high amounts for prolonged bursts and
is often performed across parallel threads, which is different
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compared to the CPU behavior during normal Web browsing.
Similarly, PoW’s run by mining scripts are memory-hard
and make a well defined footprints in memory accesses.
Web miners also distribute cryptojacking-related tasks over a
bidirectional distribution protocol which makes for unique pay-
load signatures over the network. Further, there is correlation
between the network and compute activities—large CPU bursts
are followed by brief periods of inactivity in which network
resources are used to sync computational results of the mining
to servers.

A challenge with our goal of implementing the behavioral
detector from within the browser sandbox is that a browser
only implementation severely limits visibility into system level
resource usages. For example, the CPU L1 cache hits are
shown to be a marker for memory-intensive cryptomining
PoWs [23]; however, Web browsers do not have visibility
into the L1 cache. This makes detection of the cryptojacking
a more difficult task. Despite this challenge, we show how
we can learn the signature of cryptojacking with only the
resource usage information available from within the browser.
To this end, CoinSpy builds its signatures by only moni-
toring the JavaScript stack execution times, network bytes
sent/received, and JavaScript heap memory usage, all from
within the browser.

CoinSpy collects samples of CPU, memory, and network
behaviors and represents them as a timeseries to learn both
individual and correlated patterns that point to cryptojacking,
all from within the browser. Cryptojacking is a continuous
activity that constantly executes PoWs to try and maximize
blocks mined and coins earned (See §II). Having a continual
measurement of the behavior of the system using a timeseries,
versus a point measurement such as a threshold, gives addi-
tional power in detection.

There are state-of-the-art cryptomining detectors which can
also operate in-browser and act on behavioral features [21],
[16]. However the behaviors used by these detectors are
either too preliminary or are overly specific. For example,
CMTracker [16] uses a CPU thresholding to detect mining
that is too rigid to be adjusted for in-the-wild behaviors.
Outguard [21] is tied to specific implementation of Chrome
and heavily relies on an implementation detail of miners that
can be easily changed while still allowing mining to unfold.
We explore these aspects in our evaluation of CoinSpy (Section
V).

Another main challenge is in combining these time series
data to extract a signature for cryptojacking. Combining multi-
variate time series data is lossy, and shallow learning models
perform poorly due to the high dimensionality of the data. To
address the shortcomings of shallow learning techniques such
as the need for vectorization of multiple time series and using
custom feature engineering, we design a deep Convolutional
Neural Network (CNN). The construction of the CNN model
is, in part, based on intuitions from our analysis of the
features using shallow learning. Using the CNN model is also
amenable to incremental learning to scale to new miners in the
cryptojacking landscape.

We evaluate the performance of CoinSpy over multiple
Web data sets—a test data set where we inject cryptomining
scripts to a 5K benign Websites, a curated in-the-wild data set
consisting of known cryptojacking sites, and a short overview
of the top Alexa Websites. Our evaluation shows the high ac-
curacy of CoinSpy to the current mining landscape, compares
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Figure 1: The main entities in Web mining. A cryptocurrency
miner needs to solve a complex PoW puzzle to add a block to
its blockchain. When the miner adds to the blockchain, it gets
cryptocurrency as compensation.

CoinSpy to the state of the art with a focus on why it is more
future-proof, and shows the CoinSpy browser extension can
detecting mining activity while making little impact on the
user experience.

II. BACKGROUND
In this section, we describe how Web browsers are used to

mine digital currency. The design of CoinSpy is based on an
in-depth understanding of the mining ecosystem.

A. The Web mining ecosystem
A Web mining environment consists of three main entities,

shown above in Figure 1. A given cryptocurrency has its
own blockchain. The blockchain stores transaction information
about the cryptocurrency that it relates to. In Figure 1, we
present some examples of cryptocurrencies–Monero, JSECoin,
uPlexa, and Webchain.

To add a new block to the chain requires solving a crypto-
graphic puzzle which can be computed via a computationally
hard algorithm called the Proof of Work (PoW). The reward
for solving a PoW for a block in a given blockchain is some
units of cryptocurrency represented by that blockchain.

There are many cryptocurrencies that exist today. Bitcoin,
the most popular cryptocurrency, for example, uses a PoW
algorithm that is 10,000× faster on GPU’s and specialized
hardware (ASICs) compared to commodity CPU’s [10]. This
kills any competition offered by commodity hardware.

However, there now exist coins that can be mined us-
ing memory bound hashing PoW algorithms. These PoW
algorithms can be computed effectively on stock hardware
like desktop-grade CPUs, allowing for profitable commodity
mining. CryptoNight [10] and ETHash [44] are two examples
of memory-bound PoWs. The commodity hardware used by
these miners has extended to desktops, as made available
through Web browsers.

Mining through Web browsers is a complex ecosystem.
Miners (Figure 1) remain competitive by enlisting the help of
Web servers in a collaboration known as a mining pool. The
Web servers in-turn use the resources of their Web clients to
mine coins.
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Figure 2: A step-by-step process of how cryptojacking unfolds.
Cryptojacking takes place as a three way interaction between
the Web miner, the Web server, and the client browser.

B. Web mining at the browser
Figure 2 shows, step-by-step, how miners run the PoWs

at the Web clients. Web mining is a three-way interaction
between Web miners, the Web servers, and the client’s Web
browser. A Web miner, often run by a third-party service such
as CryptoLoot [9] or JSECoin [17], enlists a Web server to
help find clients to compute PoWs; the PoW script is in the
form of a JavaScript or even WebAssembly (WASM) [13].

When a browser connects to the Web server to download
the Web page, the server sends this PoW script along with the
Web content. The PoW script is then actually run on the client
device. The script uses the client’s compute resources to solve
the PoWs and sends PoW guesses back to the Web miner. To
increase the rate of PoW completions at the client, the miners
typically spawn threads from the browser environment, known
as WebWorkers [46]. The Web miner’s servers, which actually
manage the interactions with the blockchain, are often found
from a rotating list of proxy servers as to avoid client-side
blacklisting [21], [38]. The Web miner pays the Web server a
cut of the cryptocurrency for any blocks successfully mined by
the client (or a just fixed payout per compute cycles), similar
in fashion to a finder’s fee.

‘

III. COINSPY
CoinSpy accomplishes future-proof, in-browser cryptomin-

ing detection through: (i) identifying behavioral cryptomining
signatures given our knowledge of the space and capturing
three data sources, across compute, memory, and network,
that represent them, (ii) combining the signatures, represented
as timeseries features, as inputs to a (deep) cryptomining
classifier, and (iii) incorporating incremental learning. Figure 3
provides an overview of our full system, fleshing out these
three components.

We begin our discussion of the CoinSpy design by dis-
cussing the intuition for its features. We follow with a dis-
cussion of the CoinSpy deep learning model that uses these
features to perform cryptojacking detection.

A. Compute Signature
Cryptojacking scripts require execution of PoW algorithms

that are computationally intensive (See section II), occur in
bursts to guess solutions to the cryptographic puzzles and
sync the results to mining servers, and often execute in the
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Figure 3: CoinSpy obtains behavioral browser datasources,
such as CPU, Memory, and Network profiles, during live
page loads on top of unmodified browsers. CoinSpy creates
timeseries features from these behavioral data sources and
uses them as inputs to a CNN to classify the presence of
cryptojacking activity on a given page. The CoinSpy CNN
model is incrementally updates the model.
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Figure 4: The behavioral impacts that the various parts of the
mining ecosystem have from the perspective of client browsers.

context of WebWorkers in multiple threads. Computation is
often optimized using very specific tools, such as asm.js or We-
bAssembly (WASM) [13]. In contrast, conventional JavaScript
is executed over a single thread and is more event driven, with
shorter computation periods interleaved with asynchronous
network activities.

CoinSpy uses measures computational behavior through
the browser exposed JavaScript stack profiler. Specifically,
CoinSpy takes the stack height of the profiler on each thread
and sums across all threads, each sample height represents
a point in our compute timeseries. Our intuition here is that
the PoW algorithms, due to their high computational cost,
should have some subroutines which execute for distinctly high
amounts of time. These subroutines can be represented by their
stack height, and will be encoded in the amplitudes of our time
series. How long and how many times this subroutine executes
should be encoded into frequencies of our time series. Con-
current mining activity is encoded in the amplitude since we
sum the signals across all thread. Since miners employ PoW
computation in parallel to maximize probability of mining a
new block, taking into account excessive parallelism will aid
in our detection.

B. Memory Signature
A mining script consists of a single script with two parts,

the controller and the worker. The controller is the JavaScript
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linked on Web servers. The controller contains the worker as
an actual JavaScript variable, which is loaded into JavaScript
heap space when the controller is downloaded and executed.
The worker (usually a WASM script) is the actual piece of code
that runs the PoW Algorithm. This process occurs because a
WebWorker may only be spawned from a JavaScript fetched
from the same same origin as the original Web server due
to security reasons. When the worker is loaded into memory
it is referenced by a Data URI to download and execute the
PoW algorithm. We show the memory footprint created by this
process can be separated from the usual JavaScript memory
activities of Web page loads.

To measure memory, we monitor the allocation space of
the JavaScript heap of the main thread, and all WebWorker
threads, exposed by browsers. CoinSpy samples the heap every
millisecond across all threads. We then use the total allocated
bytes at each sample as our time series for the memory
behavior of pages.

C. Network Signature
Once a mining script runs within a browser, it establishes

connections to the Web miner’s servers over a WebSocket
channel in order to get the PoW tasks corresponding to the
current block. The script communicates to the Web miner’s
servers using a protocol to handle RPC tasks. This communi-
cation is handled over a bidirectional WebSocket. This com-
munication pattern is unique and is different from the network
activity of benign Web page loads. Further, the network and
compute activities of cryptojacking are related—the network
communication occurs when the compute is idle. The model
we build can capture these correlations.

To this end, CoinSpy tracks all network flows and analyzes
the byte size of the network payloads made available through
browsers. For this feature, we measure the overall network
activity of a Web page (including that of the WebWorker
threads) by summing the bytes from all requests that were
in-flight during at a given millisecond.

D. Why are these Features Future-Proof?
The intuition as to why these features should scale in future

is that, even if some implementation details of Web mining
scripts change, they still must use some underlying similar
Web APIs whose behaviors are less likely to change [33].
Secondly, it is known that the PoW algorithms used by Web
miners must be memory-bound to be profitable to mine on
commodity devices [10], [14]. This limitation means we do
not expect their behavioral footprints to drastically change in
the future.

E. CoinSpy CNN model
We have shown cryptojacking consists of activities that

greatly affect a combination of computation, memory, and
network. A key challenge that remains is separating out these
resource behaviors on normal Web pages from those that
contain cryptojacking. CoinSpy learns a deep learning CNN
model that combines all three signals to perform this task.
First we describe why we require CNN for classification and
then describe its architecture.

Problems with shallow learning As a first step towards
building a classifier, we applied shallow learning techniques
to understand the signal obtained from the time series. Table I
shows classification performance of a shallow Logistic Ridge
Regression model. In this experiment, we collect the compute,

Learning Method CPU Network Heap All
Logistic Regression 0.800 0.610 0.928 0.853
Deep Learning 0.875 0.714 0.900 0.973

Table I: A comparison of balanced classification rate (BCR) for
2,000 labeled Web pages. We can see that while a combination
of features for the shallow learning does not increase the
accuracy, our CNN model is able to learn more complex
features form the raw data and can take advantage of this
higher granularity to use the information from all features.

memory, and network signatures for 10 seconds from 2,000
Websites half of which are ground truth benign and half of
which contain cryptomining activity (details about the Web-
sites and ground truth are in §IV). We measure our data sources
on millisecond granularity thus, we have 10,000 samples for
each data source that make up our time series.

To reduce the dimensionality, we use a Fast Fourier Trans-
form [41] and take the top-K Fourier Coefficients of highest
magnitude. As creating one feature vector from the multiple
time series is not straight forward, our approach was to create
a vector containing the top-k frequency coefficients of each
feature as well as frequency coefficients corresponding to the
other features at those top-k, thus preventing as much infor-
mation loss as possible. We used a 10-fold cross-validation to
choose the hyper-parameters and normalization constant with
the highest accuracy.

We find two inherent problems in shallow models. First,
Table I shows that the shallow models have individual clas-
sification accuracy of 80.0%, 61.0%, 92.8% when trained
individually on the compute, memory, and network timeseries
respectively. But, combining them does not improve the signal.
This is well known problem with shallow models when com-
bining multivariate time series data [26]. Second is the curse of
the dimensionality that shallow learning techniques are known
to suffer from. With our sampling rate we will essentially have
10,000 features, which which our number of samples does not
far exceed. Using the hand crafted features via the FFT to
reduce the dimensionality helps by encoding information from
these samples into a smaller amount of features, with the trade
off of losing some information.

Why CNNs? In CoinSpy, we use Convolutional Neural
Networks (CNNs) to combine the multi-variate time series and
build a cryptojacking classifier. CNNs utilize convolutions to
learn features in an unsupervised manner and are more resistant
to losing signal when modeling. Convolutions are known to
be especially effective when the features can be found in
multiple locations from within the data; we expect this to be the
case given the repeated execution of a PoW algorithm during
mining.

As cryptojacking can initiate at varying times during the
load process on a host Web page. CNNs accomplish analyzing
data with this type of signal very well by using pooling to
extract the features obtained from the convolutions across
various parts of the data. CNNs also naturally incorporate
multidimensional data, such as color channels of the same
image or timeseries aligned over the same period, without
having to specifically encode this combination into the model’s
features. These points give us high confidence in the relevance
of our choice of model.

CoinSpy’s CNN architecture: The CoinSpy choice of
deep learning model is also aided by the shallow learning
analysis. Figure 5 shows the real Fourier Coefficients for
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Figure 5: The plotted magnitudes of the real Fourier coefficients for points our model was highly confident in classifying. From
the inner plots, we most of the signal in the time series comes from the lowest 1-2% of frequencies.

the examples that our shallow model was correct and most
confident in classifying. From this we can observe that only the
lowest 1-2% of frequencies produce a signal across all features.
Though not shown, this signal was present in much higher
magnitudes for sites that were mining over those that were not,
attributing to the results in Table I. It is likely these frequencies
are encoding the signal caused by the PoW algorithms.

As the lower frequencies are the most important, the
important signal is spread out throughout the timeseries points.
In their deeper layers, CNN’s accomplish learning from long
persistent signals by convolving over highly pooled data. Thus,
intuitively it should be these deeper layers of the CNN that can
extract information we know to be encoded in these lowest
frequencies.

Figure 6 shows the CoinSpy CNN architecture. We treat
our align our three CPU, Memory, and Network timeseries
to input them as channels and perform six layers of one
dimensional convolutions and max pooling before running the
resultant signal through a fully connected layer. The fully
connected layer is used to combine the signals gathered into
the deepest layers in preparations for classification. A softmax
layer allows for classification of all three series into a binary
label, representing the presence of cryptomining. A standard
cross-entropy loss was used. Table I shows that the combining
the three time-series using deep learning does indeed improve
the classification performance.

F. Incremental learning
CoinSpy’s CNN architecture naturally supports incremental

learning. Deep neural nets learn by training on batches of
samples, as opposed to operating on a full data set at once, and
iteratively train the model weights by repeatedly performing
weight updates over the batches. To incrementally update the
model in the presence of a miner that may produce slightly
different behaviors, we only need to obtain samples of this
miner and continue training from where we left off. As our
solution runs entirely in-browser, we expect users of the
CoinSpy extension can help provide additional labels to help
update the model weights after deployment.

IV. COINSPY IMPLEMENTATION

We discuss the implementation details in terms of (a) the
data collection and labeling approach for training, (b) training
for generalizability, and (c) the implementation of an end-to-
end CoinSpy browser extension.

Provides

1D Convolutions

1D Pooling

Deep Conv + Pooling Layers

Fully Connected

Softmax Classification

Figure 6: The CoinSpy CNN architecture. Data from taken
directly from the browser is fed through a series of one
dimensional convolution and pooling layers. There information
is combined using a fully connected layer, and a softmax layer
to classify a page as mining.

A. CoinSpy model training and implementation
The first step towards training the model is to collect

training data. We describe our training set below.
At the time of writing, there does not exist a standard set

of cryptomining pages on which to train a deep learning model
such as CoinSpy. One could go about this by using existing
black lists, e.g. from NoCoin [20]. However the size of this
dataset is small, only ∼150 domains many of which are simply
WebSocket proxy servers for PoW communications that can
also be used by benign pages [38]. While the recent work of
Outguard [21] does provide a list of domains they found to be
participating in cryptojacking, we found that many of these are
no longer participating in mining, or simply no longer exist.
Thus, we also could not obtain our features from the mining
pages listed by Outguard to train CoinSpy.

Instead, we use our injection method to create cryptomin-
ing versions of the site. The script we inject is coinhive.min.js
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Parameter Selection Range
Throttle Rate {0, .1, .2, .3, .4, .5, .6, .7, .8, .9}
Number of Threads {1, 2, 3, 4, 5, 6, 7, 8}
Injection Delay (seconds) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Table II: A set of parameters that we vary when injecting a
cryptomining script to obtain our positive labels. We randomly
pull a value from the set of values listed, running the script
according to the parameters chosen.

taken from coinhive.com, which was, at the time of our train-
ing, the dominant player in the browser based cryptomining
ecosystem [37]. We show in our evaluation of CoinSpy (§V)
that our detection extends to other cryptomining families,
without explicitly training on them.

We use the Chrome Remote Debugging Protocol [8] to
obtain our data sources (Section III). Our data set consists
of 5,000 sites from Alexa Top 5k [2]. To these Websites
we inject cryptomining activity to create our ground truth
dataset (described below). To inject the mining script, we
use the functionality of the Debugging Protocol to have the
script execute asynchronously as soon as the DOM (Document
Object Model) of the page is created. Cryptomining scripts,
and hence our simulated attack, all come from client side
manipulations, so there is no effect to any live Web servers.

As has been done in the past, we implicitly trust the top
5,000 [11] Web pages to be free of cryptojacking scripts or
any malware, and assign them negative labels; the sites with
manually injected cryptomining scripts have positive labels.
While it is possible that a few of these websites may be running
cryptomining scripts and as such are not be true negatives, we
believe this number is too small (868 among top 100K in Alexa
list [16]) to add any significant noise to our training set. Of
the 10,000, we randomly choose 8,000 Websites to train, and
test on the remaining sites. We performed all model training
and testing via Tensorflow [1] on an Nvidia Tesla K80 GPU.

For each of the 10,000 Websites, we use Google Chrome
Version 68.0 to navigate to the base domain of the page, i.e.
the landing page. While navigating, we collect samples of the
CPU, memory, and network activity sources at the granularity
of 1 millisecond, giving us 10,000 time samples of each over
the time the page is live in Chrome. Sampling for a longer
time period can potentially improve the model, but will result
in an increase in model size. Additionally, browser extensions
have a limit on the model size they can load, and thus we limit
the sampling time. A shorter sampling period also implies a
smaller window for real-time detection. We start to profile
at the start of the page load to avoid missing out on any
cryptojacking signal.

B. Training for generalizability in-the-wild
In order to obtain a representative data set that captures ’in-

the-wild’ cryptojacking behavior, we vary the parameters of
the PoW algorithm and train across these parameters. Table II
shows the parameters that we vary when creating our data
set. We choose these parameters based on how cryptomining
scripts vary in the wild. Many cryptomining scripts come
the ability to be throttled. A throttling of x% means the
cryptomining script will attempt to reduce its number of CPU
cycles by x%. This is so that they can attempt to reduce their
detection or not burden their client’s resources. Cryptominers
also vary the number of threads on which they run the PoW
computation. Finally, miners often inject a delay after which
they start the mining script, to keep in tact the user experience

for the initial vital seconds of the page load. To capture
these properties, we choose to vary the scripts throttle rate
and number of mining threads and add a random delay for
when we actually start mining on a page. We then learn the
cryptojacking classifier by training over these varying PoW
behaviors.

C. End-to-end CoinSpy Browser Extension
We deploy the trained model of CoinSpy as a browser ex-

tension, a pop-up interface from which shown from in Figure 4.
The extension collects signals about the CPU, network, and
memory using browser extension APIs. While we implement
CoinSpy directly on top of Chrome, most modern browsers
provide means to collect the same data [7]. The extension
attaches to the current tab and monitors our datasources in
increments of 10 seconds.

The CoinSpy model is implemented in the extension
through Tensorflow.js. Tensorflow.js provides optimizations to
reduce the model size down from 950 MB to ∼300 MB, and
to break it up into 4MB chunks able to be cahced by the
browser so that the overhead from the model only applies
during the first run of the extension. We expect the extension to
help incrementally improve CoinSpy by having users provide
feedback on the extensions’ labeling process while browsing.

V. EVALUATION
In our evaluation of CoinSpy, we:
• Show CoinSpy has high detection accuracy of over 95%

across different datasets consisting of live and synthetic
mining activity.
• Show CoinSpy model can detect mining by other cryp-

tomining families even when not trained on them, with
an accuracy of over 98%. Further we show the CoinSpy
model, despite being behavioral, is not device-specific.
• Compare CoinSpy to the relevant state-of-the-art de-

tectors CMTracker [16] and Outguard [21]. We show
CoinSpy performs better on the current cryptomining
landscape, both through synthetic and live data, than
CMTracker and comparably to Outguard. However we
provide evidence as to why the design of CoinSpy should
scale better to future detection than both these alterna-
tives.
• Provide evidence to show that the CoinSpy browser

extension does not significantly affect the user experience
on client browsers.

A. Evaluation Methodology
Datasets: For the evaluation of CoinSpy, we collect be-

havioral data during page loads from four different Web page
sets (described below). To run all experiments, we instrument
the Chrome browser using remote debugging [7] to load each
page in our dataset for 10 seconds, and under a cold cache.
We describe the page data sets below:

Test dataset: This dataset consists of 10K total Websites:
5k benign Websites and 5k cryptomining websites where we
inject cryptojacking script from CoinHive [24] these pages. We
use this large data set for training our model (§IV). We use an
80-20 train-test split.

Curated in-the-wild dataset: To evaluate CoinSpy with real
cryptomining sites in-the-wild, we create a 100-page data set.
We query PublicWWW [36] database for domains that contain
static cryptomining signatures [37], [23]. Our query returned
857 Web pages with cryptomining signatures. However, just
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because a mining signature is present, does not mean the site
will actually mine. Examples of this include if the delivery of
the mining script does not occur on every load of the page [16],
or if the mining is subject to a user action. We thus performed
a manual sampling of 100 pages, which showed 80 of which
were actually executing cryptomining signal, and 20 that were
not despite the signatures present.

Benchmark dataset: We collect 50 sites randomly from
Alexa Top 5K. We manipulate these in various ways, such as
injecting cryptojacking scripts from different families, which
are discussed further where relevant.

Alexa 100K: To evaluate on an exclusively in-the-wild
dataset, we randomly sample a set of 100k sites from the Alexa
Top 1 Million pages and run CoinSpy over the resulting data.

Devices: We experiment across two devices. The first is
a cloud device with a 12 Core Intel Xenon Processor, 16
GB of memory, and running Ubuntu 18.04. The second is an
Ubuntu 18.04 Desktop PC with an 8 Core i5 processor, 8 GB
of RAM. We perform cross device testing to show our learned
behavior is not machine dependent. If not otherwise specified,
we present the results with data collected from the Desktop
device.

Evaluation Metrics: We evaluate CoinSpy using four met-
rics. The first is the overall accuracy. The second is Sensitivity
(True Positive Rate), i.e., how many true mining sites we
correctly identify as cryptojacking. The third is Specificity
(True Negative Rate), i.e, how many benign sites we do not flag
as cryptojacking, and Balanced Classification Rate, the average
of these two given some data sets contained an unequal number
of positives/negatives.

Compared Methods: We compare CoinSpy with the state-
of-the-art in-browser alternatives, CMTracker [16] and Out-
guard [21]. CMTracker detects cryptomining using a simple
heuristic: looking for a JavaScript function that executes on
the CPU for more than a threshold time.

Outguard combines static and behavioral features to train
a linear SVM model. Specifically, their static features include
a binary value dictating presence of known cryptomining
function identifiers on the page and a binary value indicating
that a named JavaScript function repeated multiple times.
Their behavioral features include the number of WebWork-
ers being executed, the binary presence of WebAssembly,
and signal that WebWorkers were engaging in heavy inter-
process communication via the PostMessage API [3]. This
high amount of ipc comes from the workers beign given PoW
tasks and returning their PoW guesses (§II). Other alternative
cryptomining detectors (discussed §VI) either are not confined
to the browser sandbox [23] or use exclusively static signatures
to detect cryptomining [37].

B. Evaluating CoinSpy accuracy
Table III shows that accuracy of running CoinSpy over

the test data set. The first column shows the accuracy of
running CoinSpy on the cloud device, the device on which
the model was trained on. CoinSpy has over 97% accuracy on
the test data set. As the CoinSpy extension will be operating
on behavioral footprints different from those of the original
training machine, we apply a simple normalization technique
to adapt our features to new machines.We learn a Z-score for
the means and variances for each of our 10,000 time series
points across all samples from our cloud data set. When testing
on data from a new machine, we first normalize the time series

Metric Cloud device Desktop device
Accuracy .973 .964
Sensitivity .970 .982
Specificity .977 .947
BCR .973 .964

Table III: Results on CoinSpy on the 2K test dataset. We first
run CoinSpy on the same device that the model is trained
on (the Cloud device). We then test CoinSpy on an alternate
Desktop device by applying CoinSpy without retraining. In
both cases, CoinSpy accuracy is high, over 96%.

points according to these Z-scores. Table III shows a <1%
drop in accuracy when testing CoinSpy on features from a
new machine.

C. Evaluating the CoinSpy browser extension
Our evaluation of the CoinSpy extension considers whether

the overhead of collecting the model features and running
testing the model live will affect the user’s Web quality of
experience. To do so, for each page load we measured the
extension’s performance impact through three common page
load time metrics, onload [30], first contentful paint (fcp) [32],
and time-to-interactivity [31]. These measure network load
time, rendering time, and when the user can interact with the
page respectively [19], [29].

We consider the model to have already been loaded and
parsed from the cache/network when running this experiment,
and do not include this initial overhead. We ran each page 10
times with a cold browser cache, both with and without the
model executing, and represented our final numbers for each
page as the mean of the metrics across the runs in milliseconds.

We found that, in the median case, the onload, fcp, and tti,
only inflated by 137, 15, and 124 milliseconds respectively,
which all fall into natural variances in page load times [43].
Further, a paired t-test for each metric showed CoinSpy made
no significant difference in the distributions of any metric
across pages (all p > .05). This shows that CoinSpy does
not provide significant overhead for the user’s Web quality of
experience.

D. Extending CoinSpy to other mining families
Our goal is to evaluate CoinSpy over other players

in the cryptomining landscape. Thus, we evaluate CoinSpy
against cryptomining players identified by existing works [23],
[37], [33]. These miners primarily use CryptoNight [10] and
ETHash PoWs [44], but span many cryptocurrency blockchains
(Monero, JSECoin, UPlexa). JSEMiner uses the ETHash
PoW [44] (see Figure 1). CoinImp, CryptoLoot, and WebMine
use the CryptoNight PoW [10] to mine Monero, but CoinImp
and CryptoLoot also offer scripts with modified versions of
CryptoNight to mine the WebChain and uPlexa blockchains
respectively.

Table IV shows the accuracy of CoinSpy in detecting the
five CryptoNight families of miners. To perform the evaluation,
we inject the scripts from each of these miners into the pages
from our benchmark data set for evaluation, hence we only
evaluate with accuracy. Although researchers have identified
13 popular miners [23], [37], [33] that use CryptoNight, only
the five in Table IV are active at the time of performing our
experiments. In fact, CoinHive, the largest Web mining player
of 2018 [21], [37] has shut down their service as of March
2019, showing the volatility of the environment.

Importantly, CoinSpy is able to detect the presence of these
other miners, without explicitly training for them, with an
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Miner CoinSpy CMTracker Outguard
CoinImp (Monero) 1.00 .82 1.00
CoinImp (WebChain) .98 .84 1.00
Crypto-loot (Monero) 1.00 .82 1.00
Crypto-loot (uPlexa) .98 .84 1.00
WebMine (Monero) 1.00 .82 1.00

Table IV: Evaluating CoinSpy and other relevant approaches
on detecting five other cryptomining families that employ the
CryptoNight PoW [10]

accuracy of over 98%, showing the power of our features and
model. This result also shows that, despite mining different
blockchains/currencies, these scripts do not produce highly
variable behaviors outside those accounted for in our training.
However, while Outguard also performs comparably or better
on these new families, we analyze its weaknesses in being used
as future-proof detector below.

For the ETHash PoW [44] based miner, JSEMiner [17],
our initial tests were not able to perform accurate detection.
We found this to be the case for Outguard and CMTracker
as well. On further inspection, we find that this is because
JSEMiner prioritizes the user experience over resource usages
and severely throttles CPU usage, is implemented using native
browser JavaScript libraries without WebAssembly, and exe-
cutes only in the main thread of the page. We consider this
result a positive; CoinSpy does not overreach in detection, only
detecting true abusive cryptominers.

E. Detection over the in-the-wild dataset
We move to analyze results from a small sample of in-

the-wild miners using our curated in-the-wild dataset. Table V
shows the accuracy of CoinSpy and closely related techniques.
Recall from above this dataset contained 80 ground truth
mining pages and 20 pages which contained mining signatures
but did not actually have the mining execute, which we labeled
as ground truth negatives via manual inspection. We hence
analyze in terms of both Sensitivity and Specificity.

CoinSpy was able to correctly classify 75 out of the
80 (93.8%) sites that were participating in mining. CoinSpy
correctly classified as non-cryptojacking all of the 20 Websites
that contained cryptomining code but did not perform cryp-
tojacking. In contrast, CMTracker [16] has a low Sensitivity
of 66%. We explore this aspect of CMTracker further in our
exploration of what makes CoinSpy future-proof.

We note that Outguard actually performed very slightly
better in detecting the miners than CoinSpyin this experiment,
detecting 79 of 80 ground truth miners (98.8%). This suggests
that Outguard actually outperforms CoinSpy for in-the-wild
mining detection in the current landscape. However we explore
below why Outguard may be less future-proof as a detector.

Finally, we analyzed the five false negatives where CoinSpy
marked the sites as not cryptomining. Four out of the five
sites throttled their CPU utilization to over 80%. Such a
high throttling rate means that the CPU is not utilized much,
weakening the PoW signal and making the classification hard.
However, this also restricts mining payouts. One site did not
throttle but only mined at the last second of our profile; a
longer profiling period for this page would likely allow us to
detect it, such as if the CoinSpy extension were to collect the
next 10 seconds of data while in use during live browsing.

F. A case for future-proof detection
While we have shown that CoinSpy is a performant detec-

tor under the current mining landscape, it admittedly performs

Metric CoinSpy CMTracker Outguard
Accuracy .95 .73 .98
Sensitivity .938 .666 .988
Specificity 1.0 1.0 .95
BCR .969 .799 .969

Table V: Accuracy of CoinSpy and comparisons with CM-
Tracker and Outguard on the in-the-wild dataset.
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Figure 7: A comparison of the false negative rate of CoinSpy
and CMTracker for different CPU throttling. CMTracker does
not detect miners if the CPU is throttled over 40%. In contrast,
CoinSpy is trained to be robust to throttling, only missing 5%
of miners in our set for throttle rates up to 90%. The third line
is the PoW completion rate relative to that of 0% throttling.

comparably to the Outguard [21] detector. To differentiate, we
provide several arguments for why the CoinSpy features and
design provide a more solid basis over for detection going
forward. We do so by analyzing the robustness of its features,
and its ability to incrementally update to small behavioral
changes in PoW behaviors.

Throttling CPU: Cryptominers can throttle the rate at
which they use the CPU to go undetected. Because CoinSpy
and CMTracker both operate on the behavioral effects of
mining on the CPU, we study how these detectors work under
different throttling rates. To this end, on the benchmark dataset,
we inject cryptomining activity but vary the CPU throttling
from [0, .9] in increments of .1. Correspondingly, we compute
the PoW completion rate relative to the maximum completion
rate at 0% throttling, to understand the profit trade-offs in
throttling.

Figure 7 shows the accuracy and hash rate of CoinSpy
and CMTracker across all throttling rates. CMTracker stops
detecting miners that have their rates throttled by 40% while
the PoW completion rates only decreased by ∼15% from that
of no throttling. We saw the effect this had on the performance
of CMTracker for our curated in-the-wild dataset, showing
that throttling is applied in real settings. Outguard, in fact,
cites throttling as a main reason to avoid using a simple CPU
utilization as a feature in its model [21]. Since it does not use
explicit CPU behavior, it is not affected by CPU throttling.

In comparison, CoinSpy keeps the same relative perfor-
mance throughout throttle rates, failing to detect only 5% of
the miners for throttle rates up to 90%. This result comes form
the fact that CoinSpy does not have a single static parameter,
trains across throttling rates, and includes other aspects of the
cryptomining behavior (memory, network activity).

Version Specific Implementation: Outguard obtains its
features from properties parsed from low-level browser traces.
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While these can be accessible from the browser’s runtime,
this does not mean that Outguard is guaranteed to function
following each browser update. Outguard built for the original
version of Chrome as used by the authors [21] produced all
negatives, for all of our previous evaluations, when tested
on Chrome 73 and 76. We thus modified Outguard’s feature
extractor to allow it to function on new data collected for each
of these new versions of Chrome. We verified, using ground
truth injected scripts on our benchmark dataset, that these
rebuilt Outguard versions performed to expectation [21]. The
CoinSpy behavioral features, in comparison, were invariant
with respect to the browser versions tested.

Modifying Mining Behavior: Here we aim to show how
small changes to the implementation of miners can affect
the state-of-the-art while leaving CoinSpy unaffected. For this
experiment we modified JSEMiner. Recall that JSEMiner uses
a variety of techniques to make mining less abusive for clients,
at the cost of lower profit rates. Under the motivation that
certain, more malicious, Web servers will want to maximize
cryptocurrency profits, we created a new JSEMiner that actu-
ally reduces PoW throttling and performs PoW execution in
parallel from within WebWorkers.

CoinSpy detects this aggressive JSEMiner with 97.8%
accuracy. Outguard, on the other hand, was only able to detect
this JSEMiner with an accuracy of 8.0%. This is because
of Outguard’s reliance on the inter-process communication
activities used by conventional miners to relay PoW tasks
to and from the main and WebWorker threads. However, as
JSEMiner is designed for running on a single thread, each
WebWorker in our modified version actually acts as both a
controller and a worker; no communication is done between
them via PostMessage. CoinSpy makes no such implementa-
tion assumptions, directly picking up the behavioral signals
generated by the more aggressive ETHash.

Potential to be conservative: We analyze how CoinSpy
and alternatives compare in how conservative they are in
labeling benign sites as infected. As we have shown in our
analysis of our curated in-the-wild dataset, Table V, CoinSpy
and CMTracker did not show false positives, whereas Outguard
showed 5% false positives. While quantitatively similar, there
are some qualitative differences that make CoinSpy stand out.

In the case of CMTracker, its thresholding approach rep-
resents a direct trade-off of false positives for false negatives;
choosing too low a threshold for CPU will start flagging benign
sites as malicious. The recommended threshold of CMTracker,
30%, works well to avoid false positives. However, as we have
showed, this threshold increases false negatives in the presence
of throttling.

For Outguard, we manually inspected the 5% false posi-
tives, and found that these were labeled because the amount
of inter-process communication between the main thread and
WebWorker threads was very high. Similar to how the stress
on this implementation detail hurts the robustness Outguard to
detect a modified JSECoin, it also causes it to flag benign sites.
Such inter-process communication is actually a common use
case for Web pages [46], especially as use cases for WebWork-
ers inevitably expand in the future. CoinSpy however, operates
on the exact behavioral CPU signals that PoWs make when
executing within these WebWorkers, not just on this specific
implementation detail of current miners. While it is unclear
that these biases in Outguard and CMTracker can be easily
remedied, we will show that CoinSpy can improve its false

Method BCR BCR (Without incremental training)
Shifting .880 .835
Scaling .987 .970
Warping .968 .915
All .943 .842

Table VI: CoinSpy performance in the presence of perturba-
tions, both with and without incremental training. The table
shows that CoinSpy’s incremental training is critical to its
performance.

positive rate (as observed in our Test Dataset) incrementally by
retraining with up to 10% improvement (shown in Table VI).

Future changes and Incremental learning: We have
argued the features selected by CoinSpy are more future proof
than those used for detection by CMTracker and Outguard.
While we have argued our behavioral features are not likely to
change in the future (§III), we still evaluate whether CoinSpy
can be thwarted by small changes made to implementations
of cryptomining algorithms. As finding ground truth in-the-
wild to quantify these new changes is hard, we simulate such
changes in miners by adding a set of common timeseries
perturbations [26] to our original data set.
• Shifting, where each time sample is replaced by a sample

some constant seconds in the future. We shift our 10
seconds of data from the set of {1, 2, 3} seconds.
• Scaling, where each sample is amplified by a constant

factor. We scale by factors from the set of {2, 3, 4}.
• Warping, where the speed of samples are changed by

replacing each sample with a sample in the future at an
increasing, e.g. sample i is replaced by sample 2i for all
i. We warp by factors from the set of {2, 3, 4}.
• A random selection from all of the above for each
sample.

Table VI shows the accuracy of CoinSpy when the cryp-
tomining algorithm is perturbed by shifting, scaling, and
warping. CoinSpy is able to perform cryptojacking with a
94.3% BCR across perturbations (the corresponding accuracy
was also 94.3%). Further, the table shows the importance
of incremental training, a design point of CoinSpy. Without
incremental training though, the performance is much lower, at
84.2% BCR across the perturbations, highlighting the benefits
of this design choice for CoinSpy.

G. Evaluating CoinSpy on Alexa Top 1M
We finally provide a small measurement experiment to

analyze the state of mining on the Alexa Top Sites [2]. The
Outguard project reported from experiments in mid-2018 that
0.06% of the Top 1M were engaging in cryptojacking, and
earlier works using static analysis quoted similar figures [37].
To check these results, we ran CoinSpy over a random sample
of 100k sites from the Alexa Top 1M in early 2019 to see the
state of these claims on the landscape.

It is hard obtain an explicit ground truth for verification,
due in part to the known volatility of sites to actually in-
clude cryptojacking on their pages, even within a small time
frame [16]. We thus explore a small sample of sites, of size
100, taken from the pool of sites in which CoinSpy labeled
positive over the 100k, and examine them manually. Our
manual inspection revealed 3 of these pages to be ground truth
miners. Given the sample sizes involved, we consider the figure
of 0.06% miners on the Top 1M to be plausible.
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VI. RELATED WORK
Our work is at the intersection of cryptojacking, behavioral

analysis, and Web security. We discuss related work in each
of these areas.

A. Cryptomining on the Web
Although Web cryptomining is a relatively recent phe-

nomenon there has been numerous research efforts to perform
its exploration and detection. Existing works have looked at
which Websites likely have cryptomining scripts, how much
profit one can make with cryptojacking, and the percentage of
top ranked pages that run cryptomining [37], [14], including
recent studies which take these analyses outside the scope of
the browser [35].

In terms of detection specifically, several approaches use
existing public blacklists [14] or use static signatures [37],
[20] to detect Web cryptomining. Antivirus software such as
Symmantec also detect cryptomining using a static signature.
The problem is that static code signatures and pattern matching
can be evaded, and such evasion techniques are already being
deployed by cryptominers [16], [38].

Recent works have begun to develop more general de-
tection methods, studying the unique behavior of crypto-
jacking scripts [23], [16]. One such approach is utilized by
Minesweeper [23] monitors CPU L1 caching reads and writes
as a signal for mining detection, given the known frequent
access rates to these caches by memory hard PoW algorithms.
However this low level cache information cannot be accessed
from within the scope of the browser and thus cannot be
utilized by CoinSpy.

Another closely related work [38], supplements their static
analyses, based on code length and complexity of cryptomining
scripts, by providing a first look at how behavioral features
change for sites under cryptomining. While they do not provide
an explicit behavioral detector and accuracy metrics, they
observe the changes in CPU Usage, Web Socket packet sizes,
and browser power consumption. We have argued that raw
CPU usage is not robust (See §V). Further, power consumption
cannot be accurately monitored accurately using resources only
available within Web browsers [42]. Finally, while we have
also shown the effectiveness of WebSocket activity in detecting
miners, CoinSpy shows how all three behavioral resources
of CPU, Network, and Memory can actually be combined to
perform more robust detection.

Finally, CMTracker [16] and Outguard [21], are closest to
our work and are in-browser detectors that also uses behavioral
analysis. We showed in our evaluation that CoinSpy outper-
forms CMTracker both in terms of accuracy and reducing
false positives, and is more future-proof to detect miners than
Outguard.

There has been recent work on solving PoW algorithms
to accomplish social good, rather than waste resources. We-
bCoin [22] designs a PoW for a new blockchain that can be
used to create a global distributed search indexing tool for the
Web while securing the blockchain itself. As this approach is
still its early theoretical stages, we do not evaluate CoinSpy
on this PoW algorithm.

B. Web security
Similar to cryptomining detection, several (Web) security

defenses focus on detecting malware with static signatures
such as presence of known IP/domain blacklists, or number
of DOM read/write operations [6], [5]. While these works

have been shown to be computationally efficient they are also
vulnerable to evasive techniques such as code obfuscation [27],
[18].

In response to such evasions, dynamic, behavioral based
defenses have come into favor. Examples range from using
access patterns to detect code injection attacks [34], using
TCP traffic patterns to detect botnets [41], and using perfor-
mance counting behavior to detect Linux rootkits in Android
phones [12]. However, these defenses are specific to the appli-
cation area and cannot be applied to detecting cryptomining.
As such, the intuition of a given application area is key to
designing such robust behavioral defenses.

C. Behavioral analysis using learning
Machine learning is a popular method to learn behavioral

patterns given historical data. Many approaches use shallow
learning models, e.g. Logistic Regression or Naive Bayes
using feature engineering processes [6]. Recently, there has
been a push towards deep learning based approaches that
does not require hand-crafted feature engineering. Some of
these techniques, such as classifying Android malware [45],
make use of low level data sources that are not accessible
from browsers. Other security tools deploy directly on the
browser [11], [28] and also highlight the benefits of an in-
browser defense. CoinSpy also heavily leverages deep learning
as a means to perform behavioral detection of cryptojacking,
in-browser.

VII. CONCLUSION AND FUTURE WORK
Browser-based cryptomining is a recent ethical and se-

curity concern on the Web, with cryptomining scripts being
delivered by ranked domains and even through advertisement
networks [23]. Existing defenses have several drawbacks in-
cluding what actions they can take when mining activity
is detected, their ability to be adopted by users, and how
easily they can be thwarted. To this end, we design and build
CoinSpy an entirely in-browser based framework for detecting
cryptomining activity within Web pages. CoinSpy is built using
a deep-learning pipeline that combines a variety of signals
generated when a cryptomining script executes on a Web page.
We perform in-depth analysis of both injected sites as well as
websites in the wild and show that our model is accurate should
provide better detection in future over existing alternatives.

While we have shown CoinSpy can detect cryptomining
with high accuracy, there are several future directions in which
this work can continue. In the near term, we would like to
evaluate incremental learning on PoW algorithms that are not
currently mined en masse on the Web [22]. We would also
like to evaluate different neural network architecture based on
capabilities of client device types. For example, based on the
client capabilities we may decide to use a 3-layer CNN instead
of 6 to evaluate the performance vs. accuracy trade-off. To
supplement performance, we can also explore using automated
frameworks such as Tensorflow-lite, to further optimize the
model and its size.

We also plan to evaluate user statistics of the CoinSpy
browser extension, such as how many users are actually able to
provide us with new labeled pages for in-the-wild miners that
we may currently miss. In the longer term, we would like to
answer the open question as to what actions can, and should,
be taken from the browser once cryptomining is detected; for
now we focus on detection.
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