

Deconstructing the Energy Consumption of the Mobile Page Load

Yi Cao

Joint work with:

Javad Nejati, Muhammad Wajahat, Aruna Balasubramanian, Anshul Gandhi

Department of Computer Science, Stony Brook University

• Web browser — popular app on phones

- Web browser popular app on phones
 - Page speed is critical to users
 - Several Web optimizations to improve performance

- Web browser popular app on phones
 - Page speed is critical to users
 - Several Web optimizations to improve performance

- Web browser popular app on phones
 - Page speed is critical to users
 - Several Web optimizations to improve performance

- However, often ignore a crucial factor Energy
 - Mobile devices are severely constrained by energy

- Web browser popular app on phones
 - Page speed is critical to users
 - Several Web optimizations to improve performance

- However, often ignore a crucial factor Energy
 - Mobile devices are severely constrained by energy
 - Reducing page load time may not imply energy savings

- Page load activities (Components)
 - Computation: Evaluating HTML, Javascript, CSS.
 - Network: Downloads.

- Page load activities (Components)
 - Computation: Evaluating HTML, Javascript, CSS.
 - Network: Downloads.

- In Browser Profiling Tool WProf-M
 - Decomposes the page load into different components
 - Provides component type and time information

- Page load activities (Components)
 - Computation: Evaluating HTML, Javascript, CSS.
 - Network: Downloads.

- In Browser Profiling Tool WProf-M
 - Decomposes the page load into different components
 - Provides component type and time information

- Page load activities (Components)
 - Computation: Evaluating HTML, Javascript, CSS.
 - Network: Downloads.

- In Browser Profiling Tool WProf-M
 - Decomposes the page load into different components
 - Provides component type and time information

- Page load activities (Components)
 - Computation: Evaluating HTML, Javascript, CSS.
 - Network: Downloads.

- In Browser Profiling Tool WProf-M
 - Decomposes the page load into different components
 - Provides component type and time information

- Page load activities (Components)
 - Computation: Evaluating HTML, Javascript, CSS.
 - Network: Downloads.

- In Browser Profiling Tool WProf-M
 - Decomposes the page load into different components
 - Provides component type and time information
 - Page load time (PLT) is determined by the critical path

- Reducing PLT may not imply reducing energy
 - While PLT depends on the critical path
 - Energy depends on all page load activities

- Reducing PLT may not imply reducing energy
 - While PLT depends on the critical path
 - Energy depends on all page load activities

- Reducing PLT may not imply reducing energy
 - While PLT depends on the critical path
 - Energy depends on all page load activities

- Reducing PLT may not imply reducing energy
 - While PLT depends on the critical path
 - Energy depends on all page load activities

- Reducing PLT may not imply reducing energy
 - While PLT depends on the critical path
 - Energy depends on all page load activities

- Reducing PLT may not imply reducing energy
 - While PLT depends on the critical path
 - Energy depends on all page load activities

- To estimate the Web energy, we need to:
 - evaluate the energy of entire page load
 - analyze the energy for *each individual component*

Problem Statement

Problem Statement

1. Can we get quick, accurate power and energy estimations for mobile page loads?

Problem Statement

- 1. Can we get **quick**, **accurate** power and energy estimations for mobile page loads?
- 2. Is it possible to provide visibility into both how and why Web page enhancements affect energy consumption?

- Power Monitors:
 - Measures power consumption accurately

- Power Monitors:
 - Measures power consumption accurately
 - But only report aggregate power
 - The energy bottlenecks remain hidden

- Power Monitors:
 - Measures power consumption accurately
 - But only report aggregate power
 - The energy bottlenecks remain hidden
- Power Modeling
 - Infers relationship between power and system stats

- Power Monitors:
 - Measures power consumption accurately
 - But only report aggregate power
 - The energy bottlenecks remain hidden
- Power Modeling
 - Infers relationship between power and system stats

 $P(CPU) = \beta \times CPU_util$

• Power Monitors:

- Measures power consumption accurately
- But only report aggregate power
- The energy bottlenecks remain hidden

- Power Modeling
 - Infers relationship between power and system stats

 $P(CPU) = \beta \times CPU_util$

- However, they are not sufficient for mobile Web browsing...

1. Transcience

• The page load process is short-lived

1. Transcience

- The page load process is short-lived
- For resource-based power models
 - Need extremely fine-grained resource logging to get enough data

1. Transcience

Stony Brook University

- The page load process is short-lived
- For resource-based power models
 - Need **extremely fine-grained** resource logging to get enough data
 - Frequent resource logging incurs huge overhead

• CPU overhead 30% at 100Hz logging

2. Complexity

• A web page consists of many components

2. Complexity

- A web page consists of many components
- Difficult to tease out the energy effects of
 - Specific page load activities

2. Complexity

- A web page consists of many components
- Difficult to tease out the energy effects of
 - Specific page load activities
 - Web optimizations

3. Variance

• Energy and PLT can vary significantly when loaded under the same conditions repeatedly.

3. Variance

- Energy and PLT can vary significantly when loaded under the same conditions repeatedly.
 - Example: Three runs of <u>answers.yahoo.com</u>

3. Variance

- Energy and PLT can vary significantly when loaded under the same conditions repeatedly.
 - Example: Three runs of <u>answers.yahoo.com</u>

 Difficult to estimate the power consumption of a Web page load simply by referring to previous page loads.

3. Variance

- Energy and PLT can vary significantly when loaded under the same conditions repeatedly.
 - Example: Three runs of <u>answers.yahoo.com</u>

- Difficult to estimate the power consumption of a Web page load simply by referring to previous page loads.
- Thus, we focus on power per page load instantiation.

Outline

• RECON

- Idea
- Power Model
- Training & Testing
- Evaluation & Results
- Application
- Conclusion

Idea: Resource Monitoring + App Semantics

- Idea: Resource Monitoring + App Semantics
 - Coarse-grained resource monitoring (10/sec; 2% overhead)

- Idea: Resource Monitoring + App Semantics
 - Coarse-grained resource monitoring (10/sec; 2% overhead)
 - Augmented by low-level page load semantics from WProf-M

- Idea: Resource Monitoring + App Semantics
 - Coarse-grained resource monitoring (10/sec; 2% overhead)
 - Augmented by low-level page load semantics from WProf-M

- Idea: Resource Monitoring + App Semantics
 - Coarse-grained resource monitoring (10/sec; 2% overhead)
 - Augmented by low-level page load semantics from WProf-M

Segmentation

How to match resource with component information

Segmentation

- How to match resource with component information
 - Breakdown the page load process into segments

Segmentation

How to match resource with component information

- Breakdown the page load process into segments
- Within each segment..
 - Collect component info
 - Compute avg resource use

How to match resource with component information

- Breakdown the page load process into segments
- Within each segment..
 - Collect component info
 - Compute avg resource use
- RECON
 - Segment level power modeling

Linear Regression Model

Weighted Linear combination

$$P_s = \alpha + \sum_{i \in Resources} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j,$$

- Specifically, for each segment

Linear Regression Model

Weighted Linear combination

$$P_s = \alpha + \sum_{i \in Resources} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j,$$

- Specifically, for each segment
 - P_s (Average power consumption of segment s)

Using a power monitor to get P_s just for building the model

Stony Brook University

Linear Regression Model

CPU Utilization(%)

Weighted Linear combination

 $= \alpha +$

$$= \alpha + \sum_{i \in Resources} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j,$$

- Specifically, for each segment
 - P_s (Average power consumption of segment s)
 - R_i (Resource Usage: CPU %, bytes rx/tx, ...) ▶

 $j \in C_s$

Using a power monitor to get P_s just for building the model

Stony Brook University

Linear Regression Model

CPU Utilization(%)

 $\beta_i R_i + \sum \gamma_j F_j,$

 $j \in C_s$

Weighted Linear combination

$$P_s = \alpha + \sum_{i=D}$$

 $i \in Resources$

- Specifically, for each segment
 - P_s (Average power consumption of segment s)
 - R_i (Resource Usage: CPU %, bytes rx/tx, ...)
 - F_j (Frequency of Component: EvalHtml, ...)

Using a power monitor to get P_s just for building the model

Linear Regression Model

CPU Utilization(%

 $j \in C_s$

CPU Utilization(%)

Weighted Linear combination

- $i {\in} Resources$
- Specifically, for each segment
 - P_s (Average power consumption of segment s)
 - R_i (Resource Usage: CPU %, bytes rx/tx, ...)
 - F_i (Frequency of Component: EvalHtml, ...)
 - $\alpha, \beta_i, \gamma_j$ (Weights)

HTML 📒 Javascript 📒 CSS 📒 Image 🛑 Othe

Using a power monitor to get P_s just for building the model

Linear Regression Model

CPU Utilization(%

 $j \in C_s$

CPU Utilization(%)

Weighted Linear combination

- $i \in Resources$
- Specifically, for each segment
 - P_s (Average power consumption of segment s)
 - R_i (Resource Usage: CPU %, bytes rx/tx, ...)
 - F_i (Frequency of Component: EvalHtml, ...)
 - $\alpha, \beta_i, \gamma_j$ (Weights)
- Measure: P_s , R_i , F_j
- To Derive unknown $lpha,eta_i,\gamma_j$:
 - Use multiple linear regression

HTML 📕 Javascript 📕 CSS 📕 Image 📕 Oth

Using a power monitor to get P_s just for building the model

Neural Network Model

• Detect non-linear relationships:

$$P_s = y_0 + \sum_{k=1}^m y_k \left(1 + \exp\left(-\left(x_k + \sum_{i \in Res} \theta_{k,i} R_i + \sum_{j \in C_s} \phi_{k,j} F_j\right)\right) \right)^{-1}$$

Neural Network Model

• Detect non-linear relationships:

$$P_s = y_0 + \sum_{k=1}^m y_k \left(1 + \exp\left(-\left(x_k + \sum_{i \in Res} \theta_{k,i} R_i + \sum_{j \in C_s} \phi_{k,j} F_j\right)\right) \right)^{-1}$$

- Trade-off
 - LR: fast | simple 2 seconds for 4-CV
 - NN: powerful | complicated, slow 20 minutes for 1-CV

- Training
 - Randomly select 80 pages, pick 60 for training
 - For each Web page, we run 10 times

$$P_s = \alpha + \sum_{i \in Resources} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j,$$

• Training

- Randomly select 80 pages, pick 60 for training
 - For each Web page, we run 10 times
- Monitor P_s , R_i , F_j ; derive $lpha, eta_i, \gamma_j$

$$P_s = \alpha + \sum_{i \in Resources} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j,$$

• Training

Testing

- Randomly select 80 pages, pick 60 for training
 - For each Web page, we run 10 times
- Monitor P_s , R_i , F_j ; derive $lpha, eta_i, \gamma_j$

$$P_s = \alpha + \sum_{i \in Resources} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j,$$

- Test on the remaining 20 pages
 - 10 runs per page

• Training

- Randomly select 80 pages, pick 60 for training
 - For each Web page, we run 10 times
- Monitor P_s , R_i , F_j ; derive $lpha, eta_i, \gamma_j$

$$P_s = \alpha + \sum_{i \in Resources} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j,$$

- Testing → i∈Resources
 Test on the remaining 20 pages
 - 10 runs per page
 - Monitor R_i , F_j ; estimate \hat{P}_s using weighted linear summation

Training

- Randomly select 80 pages, pick 60 for training
 - For each Web page, we run 10 times
- Monitor P_s , R_i , F_j ; derive $lpha, eta_i, \gamma_j$

$$P_s = \alpha + \sum_{i \in Resources} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j,$$

- Testing
 - Test on the remaining 20 pages
 - 10 runs per page
 - Monitor R_i , F_j ; estimate \hat{P}_s using weighted linear summation
- Experiment on 3 devices:
 - Samsung Galaxy S4, S5, Nexus
 - Device-specific weights

Outline

RECON

- Evaluation & Results
 - Mean Error
 - RECON Error CDF & Different devices
- Application
- Conclusion

Mean Error < 7%

• Webpage-level Estimation (Galaxy S4)

Mean Error < 7%

- Webpage-level Estimation (Galaxy S4)
 - Average estimation error 6.3% across 80 Web pages (4-fold CV)
 - NN reduces the error to 5.4%.

Mean Error < 7%

- Webpage-level Estimation (Galaxy S4)
 - Average estimation error 6.3% across 80 Web pages (4-fold CV)

RECON Error CDF

RECON Error CDF

- The CDF shows the energy estimation errors across all runs of all 80 Web pages. We see that 80% of the errors are below 10%.

RECON Error CDF

- The CDF shows the energy estimation errors across all runs of all 80 Web pages. We see that 80% of the errors are below 10%.

RECON Error CDF

- The CDF shows the energy estimation errors across all runs of all 80 Web pages. We see that 80% of the errors are below 10%.

Segment Error

Fine-grained power estimation

Based on segments

Segment error 7.8% for yelp.com

Segment error 9.7% for sfr.fr

Outline

- RECON
- Evaluation & Results
- Application
 - Analyze Web enhancements' non-intuitive energy behaviors
 - Two case studies
 - ► Caching
 - Compression
- Conclusion

Case 1: Caching

 How will PLT and Energy change due to caching?

stackoverflow.com with caching

Case 1: Caching

• How will PLT and Energy change due to caching?

Case 1: Caching

• How will PLT and Energy change due to caching?

	PLT(s)	Energy(J)
Original	2.5	8.2
Cached	2.1	5.7
Reduce%	16 %	30%

Energy Reduction ~= 2X PLT Reduction

Case 1: Caching

• How will PLT and Energy change due to caching?

	PLT(s)	Energy(J)
Original	2.5	8.2
Cached	2.1	5.7
Reduce%	16 %	30%

Energy Reduction ~= 2X PLT Reduction

Case 1: Caching

• How will PLT and Energy change due to caching?

	PLT(s)	Energy(J)
Original	2.5	8.2
Cached	2.1	5.7
Reduce%	16 %	30%

Energy Reduction ~= 2X PLT Reduction

Case 1: Caching

• How will PLT and Energy change due to caching?

	PLT(s)	Energy(J)
Original	2.5	8.2
Cached	2.1	5.7
Reduce%	16 %	30%

Energy Reduction ~= 2X PLT Reduction

RECON: Energy for Downloads reduces by **81%**!

- Compression level ranges from 1 to 9 (NGINX)
 - Iv.9 is the highest compression level

irs.gov under compression level 1

- Compression level ranges from 1 to 9 (NGINX)
 - Iv.9 is the highest compression level

irs.gov under compression level 1

- Compression level ranges from 1 to 9 (NGINX)
 - Iv.9 is the highest compression level

	PLT ↓	Energy	↓
Level 1	78%	75%	Better!
Level 9	47%	39%	

- Lower compression level provides more benefits!

<u>irs.gov</u> under compression level 1 0 500 1000

- Compression level ranges from 1 to 9 (NGINX)
 - Iv.9 is the highest compression level

	PLT ↓	Energy	↓
Level 1	78%	75%	Better!
Level 9	47%	39%	

- Lower compression level provides more benefits!

RECON: 37% more CPU energy due to CSS and Javascript decompression irs.gov under compression level 1

Outline

- RECON
- Evaluation & Results
- Application

Conclusion

Conclusion

- Web performance critical
 - Overlook energy
 - Mobile devices are constrained by energy
- We present RECON
 - Leverages page load semantics and resource-level information
 - Less than 7% error across 80 webpages.
 - Enables evaluating the energy effects of Web optimizations

Conclusion

- Web performance critical
 - Overlook energy
 - Mobile devices are constrained by energy
- We present RECON
 - Leverages page load semantics and resource-level information
 - Less than 7% error across 80 webpages.
 - Enables evaluating the energy effects of Web optimizations

• Thank you!

