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Overview
• Web browser — popular app on phones

- Page speed is critical to users
- Several Web optimizations to improve performance

• However, often ignore a crucial factor — Energy
- Mobile devices are severely constrained by energy
- Reducing page load time may not imply energy savings
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Page Load Process
• Page load activities (Components)

- Computation: Evaluating HTML, Javascript, CSS.
- Network: Downloads.

3

Component

Page	Load	

img

img

Javascript
Javascript

HTML2HTML1



Page Load Process
• Page load activities (Components)

- Computation: Evaluating HTML, Javascript, CSS.
- Network: Downloads.

• In Browser Profiling Tool — WProf-M
- Decomposes the page load into different components
- Provides component type and time information

3

Component

Page	Load	

img

img

Javascript
Javascript

HTML2HTML1



Page Load Process
• Page load activities (Components)

- Computation: Evaluating HTML, Javascript, CSS.
- Network: Downloads.

• In Browser Profiling Tool — WProf-M
- Decomposes the page load into different components
- Provides component type and time information

3

Component

Page	Load	

img

img

Javascript
Javascript

HTML2HTML1



Page Load Process
• Page load activities (Components)

- Computation: Evaluating HTML, Javascript, CSS.
- Network: Downloads.

• In Browser Profiling Tool — WProf-M
- Decomposes the page load into different components
- Provides component type and time information

3

Component

Page	Load	

img

img

Javascript
Javascript

HTML2HTML1



Page Load Process
• Page load activities (Components)

- Computation: Evaluating HTML, Javascript, CSS.
- Network: Downloads.

• In Browser Profiling Tool — WProf-M
- Decomposes the page load into different components
- Provides component type and time information

3

Component

Page	Load	

img

img

Javascript
Javascript

HTML2HTML1



Page Load Process
• Page load activities (Components)

- Computation: Evaluating HTML, Javascript, CSS.
- Network: Downloads.

• In Browser Profiling Tool — WProf-M
- Decomposes the page load into different components
- Provides component type and time information
- Page load time (PLT) is determined by the critical path

3

Critical Path Component

Page	Load	

img

img

Javascript
Javascript

HTML2HTML1



•  Reducing PLT may not imply reducing energy
- While PLT depends on the critical path
- Energy depends on all page load activities

Energy of the Page Load
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Compression

•  Reducing PLT may not imply reducing energy
- While PLT depends on the critical path
- Energy depends on all page load activities

• To estimate the Web energy, we need to:
- evaluate the energy of entire page load
- analyze the energy for each individual component

Energy of the Page Load
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Problem Statement

1. Can we get quick, accurate power and energy 
estimations for mobile page loads?

2. Is it possible to provide visibility into both how and why 
Web page enhancements affect energy consumption?
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Existing Solutions
• Power Monitors:

- Measures power consumption accurately
- But only report aggregate power
- The energy bottlenecks remain hidden

• Power Modeling
- Infers relationship between power and system stats

- However, they are not sufficient for mobile Web browsing…
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1. Transcience

• The page load process is short-lived
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Challenges (1/3)
1. Transcience

• The page load process is short-lived
• For resource-based power models

- Need extremely fine-grained resource logging to get enough data
- Frequent resource logging incurs huge overhead

‣ CPU overhead 30% at 100Hz logging
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 2. Complexity

• A web page consists of many components
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Challenges (2/3)
 2. Complexity

• A web page consists of many components
• Difficult to tease out the energy effects of

- Specific page load activities
- Web optimizations
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Challenges (3/3)
 3. Variance

• Energy and PLT can vary significantly when loaded under the 
same conditions repeatedly.
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Challenges (3/3)
 3. Variance

• Energy and PLT can vary significantly when loaded under the 
same conditions repeatedly.
- Example: Three runs of answers.yahoo.com

Red Blue Green

PLT(s) 3.9 3.5 2.8

Energy(J) 12.5 11.8 9.2

9

• Difficult to estimate the power consumption of a Web page load 
simply by referring to previous page loads.

• Thus, we focus on power per page load instantiation.

http://answers.yahoo.com


Outline
• RECON

- Idea
- Power Model
- Training & Testing

• Evaluation & Results 
• Application 
• Conclusion
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CPU Utilization

• How to match resource with component information
- Breakdown the page load process into segments
- Within each segment..

‣ Collect component info
‣ Compute avg resource use

• RECON
- Segment level power modeling
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Linear Regression Model
• Weighted Linear combination

- Specifically, for each segment
‣      (Average power consumption of segment s)
‣       (Resource Usage: CPU %, bytes rx/tx, …)
‣       (Frequency of Component: EvalHtml, …)
‣                   (Weights)

- Measure:     ,    ,       
- To Derive unknown                 :

‣ Use multiple linear regression
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Neural Network Model
• Detect non-linear relationships:
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Neural Network Model
• Detect non-linear relationships:

• Trade-off
- LR: fast | simple — 2 seconds for 4-CV
- NN: powerful | complicated, slow — 20 minutes for 1-CV
-
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• Training
- Randomly select 80 pages, pick 60 for training

‣ For each Web page, we run 10 times
- Monitor      ,     ,     ; derive 

• Testing
- Test on the remaining 20 pages

‣ 10 runs per page
- Monitor     ,    ; estimate      using weighted linear summation

• Experiment on 3 devices: 
- Samsung Galaxy S4, S5, Nexus
- Device-specific weights

Ri

Ri

Ps

P̂s

Model Building — LR



Outline
• RECON 

• Evaluation & Results
- Mean Error
- RECON Error CDF & Different devices

• Application 
• Conclusion
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Mean Error < 7%
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• Webpage-level Estimation (Galaxy S4)
- Average estimation error 6.3% across 80 Web pages (4-fold CV)

‣ NN reduces the error to 5.4%.
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- The CDF shows the energy estimation errors across all runs of 
all 80 Web pages. We see that 80% of the errors are below 10%. 

Error S4 S5 Nexus

Webpage 6.3% 7.1% 9.1%

Different Devices
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Segment Error
• Fine-grained power estimation 

- Based on segments
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Segment error 7.8% for yelp.com Segment error 9.7% for sfr.fr
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Outline
• RECON 
• Evaluation & Results 

• Application
- Analyze Web enhancements’ non-intuitive energy behaviors
- Two case studies
‣ Caching
‣ Compression

• Conclusion
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Case 1: Caching
• How will PLT and Energy                                                                

change due to caching?
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RECON: Energy for  
Downloads reduces by 81%!
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www.irs.gov	when	compression	level	9	is	applied	

www.irs.gov	when	compression	level	1	is	applied	irs.gov under compression level 1

irs.gov under compression level 9

RECON: 37% more CPU 
energy due to CSS and 

Javascript decompression
Longer

Decompression

JavaScript CSS
Better!
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Conclusion
• Web performance critical

- Overlook energy
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• We present RECON
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- Less than 7% error across 80 webpages.
- Enables evaluating the energy effects of Web optimizations
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Conclusion
• Web performance critical

- Overlook energy
- Mobile devices are constrained by energy

• We present RECON
- Leverages page load semantics and resource-level information
- Less than 7% error across 80 webpages.
- Enables evaluating the energy effects of Web optimizations

• Thank you!
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